The finite models of a universal sentence $Phi$ in a finite relational signature are the age of a homogeneous structure if and only if $Phi$ has the amalgamation property. We prove that the computational problem whether a given universal sentence $Phi$ has the amalgamation property is PSPACE-hard, even if $Phi$ is additionally Horn and the signature of $Phi$ only contains relation symbols of arity at most three. The decidability of the problem remains open.
Action logic is the algebraic logic (inequational theory) of residuated Kleene lattices. This logic involves Kleene star, axiomatized by an induction scheme. For a stronger system which uses an $omega$-rule instead (infinitary action logic) Buszkowski and Palka (2007) have proved $Pi_1^0$-completeness (thus, undecidability). Decidability of action logic itself was an open question, raised by D. Kozen in 1994. In this article, we show that it is undecidable, more precisely, $Sigma_1^0$-complete. We also prove the same complexity results for all recursively enumerable logics between action logic and infinitary action logic; for fragments of those only one of the two lattice (additive) connectives; for action logic extended with the law of distributivity.
Omega-powers of finitary languages are omega languages in the form V^omega, where V is a finitary language over a finite alphabet X. Since the set of infinite words over X can be equipped with the usual Cantor topology, the question of the topological complexity of omega-powers naturally arises and has been raised by Niwinski, by Simonnet, and by Staiger. It has been recently proved that for each integer n > 0, there exist some omega-powers of context free languages which are Pi^0_n-complete Borel sets, and that there exists a context free language L such that L^omega is analytic but not Borel. But the question was still open whether there exists a finitary language V such that V^omega is a Borel set of infinite rank. We answer this question in this paper, giving an example of a finitary language whose omega-power is Borel of infinite rank.
Exactly 20 years ago at MFCS, Demaine posed the open problem whether the game of Dots & Boxes is PSPACE-complete. Dots & Boxes has been studied extensively, with for instance a chapter in Berlekamp et al. Winning Ways for Your Mathematical Plays, a whole book on the game The Dots and Boxes Game: Sophisticated Childs Play by Berlekamp, and numerous articles in the Games of No Chance series. While known to be NP-hard, the question of its complexity remained open. We resolve this question, proving that the game is PSPACE-complete by a reduction from a game played on propositional formulas.
One-counter nets (OCN) are Petri nets with exactly one unbounded place. They are equivalent to a subclass of one-counter automata with just a weak test for zero. Unlike many other semantic equivalences, strong and weak simulation preorder are decidable for OCN, but the computational complexity was an open problem. We show that both strong and weak simulation preorder on OCN are PSPACE-complete.
A door gadget has two states and three tunnels that can be traversed by an agent (player, robot, etc.): the open and close tunnel sets the gadgets state to open and closed, respectively, while the traverse tunnel can be traversed if and only if the door is in the open state. We prove that it is PSPACE-complete to decide whether an agent can move from one location to another through a planar assembly of such door gadgets, removing the traditional need for crossover gadgets and thereby simplifying past PSPACE-hardness proofs of Lemmings and Nintendo games Super Mario Bros., Legend of Zelda, and Donkey Kong Country. Our result holds in all but one of the possible local planar embedding of the open, close, and traverse tunnels within a door gadget; in the one remaining case, we prove NP-hardness. We also introduce and analyze a simpler type of door gadget, called the self-closing door. This gadget has two states and only two tunnels, similar to the open and traverse tunnels of doors, except that traversing the traverse tunnel also closes the door. In a variant called the symmetric self-closing door, the open tunnel can be traversed if and only if the door is closed. We prove that it is PSPACE-complete to decide whether an agent can move from one location to another through a planar assembly of either type of self-closing door. Then we apply this framework to prove new PSPACE-hardness results for eight different 3D Mario games and Sokobond.