No Arabic abstract
The large-scale deep underwater Cherenkov neutrino telescopes like Baikal-GVD, ANTARES or KM3NeT, require calibration and testing methods of their optical modules. These methods usually include laser-based systems which allow to check the telescope responses to the light and for real-time monitoring of the optical parameters of water such as absorption and scattering lengths, which show seasonal changes in natural reservoirs of water. We will present a testing method of a laser calibration system and a set of dedicated tools developed for Baikal- GVD, which includes a specially designed and built, compact, portable, and reconfigurable scanning station. This station is adapted to perform fast quality tests of the underwater laser sets just before their deployment in the telescope structure, even on ice, without darkroom. The testing procedure includes the energy stability test of the laser device, 3D scan of the light emission from the diffuser and attenuation test of the optical elements of the laser calibration system. The test bench consists primarily of an automatic mechanical scanner with a movable Si detector, beam splitter with a reference Si detector and, optionally, Q-switched diode-pumped solid-state laser used for laboratory scans of the diffusers. The presented test bench enables a three-dimensional scan of the light emission from diffusers, which are designed to obtain the isotropic distribution of photons around the point of emission. The results of the measurement can be easily shown on a 3D plot immediately after the test and may be also implemented to a dedicated program simulating photons propagation in water, which allows to check the quality of the diffuser in the scale of the Baikal-GVD telescope geometry.
Baikal-GVD is a kilometer scale neutrino telescope currently under construction in Lake Baikal. Due to water currents in Lake Baikal, individual photomultiplier housings are mobile and can drift away from their initial position. In order to accurately determine the coordinates of the photomultipliers, the telescope is equipped with an acoustic positioning system. The system consists of a network of acoustic modems, installed along the telescope strings and uses acoustic trilateration to determine the coordinates of individual modems. This contribution discusses the current state of the positioning in Baikal-GVD, including the recent upgrade to the acoustic modem polling algorithm.
The Baikal-GVD is a neutrino telescope under construction in Lake Baikal. The main goal of the Baikal-GVD is to observe neutrinos via detecting the Cherenkov radiation of the secondary charged particles originating in the interactions of neutrinos. In 2021, the installation works concluded with 2304 optical modules installed in the lake resulting in effective volume approximately 0.4 km$^{3}$. In this paper, the first steps in the development of double cascade reconstruction techniques are presented.
The first stage of the construction of the deep underwater neutrino telescope Baikal-GVD is planned to be completed in 2024. The second stage of the detector deployment is planned to be carried out using a data acquisition system based on fibre optic technologies, which will allow for increased data throughput and more flexible trigger conditions. A dedicated test facility has been built and deployed at the Baikal-GVD site to test the new technological solutions. We present the principles of operation and results of tests of the new data acquisition system.
In April 2019, the Baikal-GVD collaboration finished the installation of the fourth and fifth clusters of the neutrino telescope Baikal-GVD. Momentarily, 1440 Optical Modules (OM) are installed in the largest and deepest freshwater lake in the world, Lake Baikal, instrumenting 0.25 cubic km of sensitive volume. The Baikal-GVD is thus the largest neutrino telescope on the Northern Hemisphere. The first phase of the detector construction is going to be finished in 2021 with 9 clusters, 2592 OMs in total, however the already installed clusters are stand-alone units which are independently operational and taking data from their commissioning. Huge number of channels as well as strict requirements for the precision of the time and charge calibration (ns, p.e.) make calibration procedures vital and very complex tasks. The inter cluster time calibration is performed with numerous calibration systems. The charge calibration is carried out with a Single Photo-Electron peak. The various data acquired during the last three years in regular and special calibration runs validate successful performance of the calibration systems and of the developed calibration techniques. The precision of the charge calibration has been improved and the time dependence of the obtained calibration parameters have been cross-checked. The multiple calibration sources verified a 1.5 - 2.0 ns precision of the in-situ time calibrations. The time walk effect has been studied in detail with in situ specialized calibration runs.
A cubic kilometer scale neutrino telescope Baikal-GVD is currently under construction in Lake Baikal. Baikal-GVD is designed to detect Cerenkov radiation from products of astrophysical neutrino interactions with Baikal water by a lattice of photodetectors submerged between the depths of 1275 and 730 m. The detector components are mounted on flexible strings and can drift from their initial positions upwards to tens of meters. This introduces positioning uncertainty which translates into a timing error for Cerenkov signal registration. A spatial positioning system has been developed to resolve this issue. In this contribution, we present the status of this system, results of acoustic measurements and an estimate of positioning error for an individual component.