Do you want to publish a course? Click here

An Empirical Analysis on Transparent Algorithmic Exploration in Recommender Systems

392   0   0.0 ( 0 )
 Added by Kihwan Kim
 Publication date 2021
and research's language is English
 Authors Kihwan Kim




Ask ChatGPT about the research

All learning algorithms for recommendations face inevitable and critical trade-off between exploiting partial knowledge of a users preferences for short-term satisfaction and exploring additional user preferences for long-term coverage. Although exploration is indispensable for long success of a recommender system, the exploration has been considered as the risk to decrease user satisfaction. The reason for the risk is that items chosen for exploration frequently mismatch with the users interests. To mitigate this risk, recommender systems have mixed items chosen for exploration into a recommendation list, disguising the items as recommendations to elicit feedback on the items to discover the users additional tastes. This mix-in approach has been widely used in many recommenders, but there is rare research, evaluating the effectiveness of the mix-in approach or proposing a new approach for eliciting user feedback without deceiving users. In this work, we aim to propose a new approach for feedback elicitation without any deception and compare our approach to the conventional mix-in approach for evaluation. To this end, we designed a recommender interface that reveals which items are for exploration and conducted a within-subject study with 94 MTurk workers. Our results indicated that users left significantly more feedback on items chosen for exploration with our interface. Besides, users evaluated that our new interface is better than the conventional mix-in interface in terms of novelty, diversity, transparency, trust, and satisfaction. Finally, path analysis show that, in only our new interface, exploration caused to increase user-centric evaluation metrics. Our work paves the way for how to design an interface, which utilizes learning algorithm based on users feedback signals, giving better user experience and gathering more feedback data.

rate research

Read More

As the field of recommender systems has developed, authors have used a myriad of notations for describing the mathematical workings of recommendation algorithms. These notations ap-pear in research papers, books, lecture notes, blog posts, and software documentation. The dis-ciplinary diversity of the field has not contributed to consistency in notation; scholars whose home base is in information retrieval have different habits and expectations than those in ma-chine learning or human-computer interaction. In the course of years of teaching and research on recommender systems, we have seen the val-ue in adopting a consistent notation across our work. This has been particularly highlighted in our development of the Recommender Systems MOOC on Coursera (Konstan et al. 2015), as we need to explain a wide variety of algorithms and our learners are not well-served by changing notation between algorithms. In this paper, we describe the notation we have adopted in our work, along with its justification and some discussion of considered alternatives. We present this in hope that it will be useful to others writing and teaching about recommender systems. This notation has served us well for some time now, in research, online education, and traditional classroom instruction. We feel it is ready for broad use.
Recommender Systems are especially challenging for marketplaces since they must maximize user satisfaction while maintaining the healthiness and fairness of such ecosystems. In this context, we observed a lack of resources to design, train, and evaluate agents that learn by interacting within these environments. For this matter, we propose MARS-Gym, an open-source framework to empower researchers and engineers to quickly build and evaluate Reinforcement Learning agents for recommendations in marketplaces. MARS-Gym addresses the whole development pipeline: data processing, model design and optimization, and multi-sided evaluation. We also provide the implementation of a diverse set of baseline agents, with a metrics-driven analysis of them in the Trivago marketplace dataset, to illustrate how to conduct a holistic assessment using the available metrics of recommendation, off-policy estimation, and fairness. With MARS-Gym, we expect to bridge the gap between academic research and production systems, as well as to facilitate the design of new algorithms and applications.
Collaborative filtering, a widely-used recommendation technique, predicts a users preference by aggregating the ratings from similar users. As a result, these measures cannot fully utilize the rating information and are not suitable for real world sparse data. To solve these issues, we propose a novel user distance measure named Preference Movers Distance (PMD) which makes full use of all ratings made by each user. Our proposed PMD can properly measure the distance between a pair of users even if they have no co-rated items. We show that this measure can be cast as an instance of the Earth Movers Distance, a well-studied transportation problem for which several highly efficient solvers have been developed. Experimental results show that PMD can help achieve superior recommendation accuracy than state-of-the-art methods, especially when training data is very sparse.
Recommender Systems are nowadays successfully used by all major web sites (from e-commerce to social media) to filter content and make suggestions in a personalized way. Academic research largely focuses on the value of recommenders for consumers, e.g., in terms of reduced information overload. To what extent and in which ways recommender systems create business value is, however, much less clear, and the literature on the topic is scattered. In this research commentary, we review existing publications on field tests of recommender systems and report which business-related performance measures were used in such real-world deployments. We summarize common challenges of measuring the business value in practice and critically discuss the value of algorithmic improvements and offline experiments as commonly done in academic environments. Overall, our review indicates that various open questions remain both regarding the realistic quantification of the business effects of recommenders and the performance assessment of recommendation algorithms in academia.
373 - Shoujin Wang , Liang Hu , Yan Wang 2021
Recent years have witnessed the fast development of the emerging topic of Graph Learning based Recommender Systems (GLRS). GLRS employ advanced graph learning approaches to model users preferences and intentions as well as items characteristics for recommendations. Differently from other RS approaches, including content-based filtering and collaborative filtering, GLRS are built on graphs where the important objects, e.g., users, items, and attributes, are either explicitly or implicitly connected. With the rapid development of graph learning techniques, exploring and exploiting homogeneous or heterogeneous relations in graphs are a promising direction for building more effective RS. In this paper, we provide a systematic review of GLRS, by discussing how they extract important knowledge from graph-based representations to improve the accuracy, reliability and explainability of the recommendations. First, we characterize and formalize GLRS, and then summarize and categorize the key challenges and main progress in this novel research area. Finally, we share some new research directions in this vibrant area.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا