No Arabic abstract
Finite-size scaling is investigated in detail around the critical point in the heavy-quark region of nonzero temperature QCD. Numerical simulations are performed with large spatial volumes up to the aspect ratio $N_s/N_t=12$ at a fixed lattice spacing with $N_t=4$. We show that the Binder cumulant and the distribution function of the Polyakov loop follow the finite-size scaling in the $Z(2)$ universality class for large spatial volumes with $N_s/N_t ge 9$, while, for $N_s/N_t le 8$, the Binder cumulant becomes inconsistent with the $Z(2)$ scaling. To realize the large-volume simulations in the heavy-quark region, we adopt the hopping tails expansion for the quark determinant: We generate gauge configurations using the leading order action including the Polyakov loop term for $N_t=4$, and incorporate the next-to-leading order effects in the measurements by the multipoint reweighting method. We find that the use of the leading-order configurations is crucially effective in suppressing the overlapping problem in the reweighting and thus reducing the statistical errors.
An effective Finite-Size Scaling (FSS) of moment products from recent STAR measurements of the variance $sigma$, skewness $S$ and kurtosis $kappa$ of net-proton multiplicity distributions, are reported for a broad range of collision centralities in Au+Au ($sqrt{s_{NN}}= 7.7 - 200$ GeV) collisions. The products $Ssigma $ and $kappa sigma^2 $, which are directly related to the hgher-order baryon number susceptibility ratios $chi^{(3)}_B/chi^{(2)}_B$ and $chi^{(4)}_B/chi^{(2)}_B$, show scaling patterns consistent with earlier indications for a second order phase transition at a critical end point (CEP) in the plane of temperature vs. baryon chemical potential ($T,mu_B$) of the QCD phase diagram. The resulting scaling functions validate the earlier estimates of $T^{text{cep}} sim 165$ MeV and $mu_B^{text{cep}} sim 95$ MeV for the location of the CEP, and the critical exponents used to assign its 3D Ising model universality class.
We study the phase structure of lattice QCD with heavy quarks at finite temperature and density by a histogram method. We determine the location of the critical point at which the first-order deconfining transition in the heavy-quark limit turns into a crossover at intermediate quark masses through a change of the shape of the histogram under variation of coupling parameters. We estimate the effect of the complex phase factor which causes the sign problem at finite density, and show that, in heavy-quark QCD, the effect is small around the critical point. We determine the critical surface in 2+1 flavor QCD in the heavy-quark region at all values of the chemical potential mu including mu=infty.
We extend our previous study of the QCD phase structure in the heavy quark region to non-zero chemical potentials. To identify the critical point where the first order deconfining transition terminates, we study an effective potential defined by the probability distribution function of the plaquette and the Polyakov loop. The reweighting technique is shown to be powerful in evaluating the effective potential in a wide range of the plaquette and Polyakov loop expectation values. We adopt the cumulant expansion to overcome the sign problem in the calculation of complex phase of the quark determinant. We find that the method provides us with an intuitive and powerful way to study the phase structure. We estimate the location of the critical point at finite chemical potential in the heavy quark region.
We study the end point of the first-order deconfinement phase transition in two and 2+1 flavor QCD in the heavy quark region of the quark mass parameter space. We determine the location of critical point at which the first-order deconfinement phase transition changes to crossover, and calculate the pseudo-scalar meson mass at the critical point. Performing quenched QCD simulations on lattices with the temporal extents Nt=6 and 8, the effects of heavy quarks are determined using the reweighting method. We adopt the hopping parameter expansion to evaluate the quark determinants in the reweighting factor. We estimate the truncation error of the hopping parameter expansion by comparing the results of leading and next-to-leading order calculations, and study the lattice spacing dependence as well as the spatial volume dependence of the result for the critical point. The overlap problem of the reweighting method is also examined. Our results for Nt=4 and 6 suggest that the critical quark mass decreases as the lattice spacing decreases and increases as the spatial volume increases.
We report the current status of the on-going lattice-QCD calculations of nucleon isovector axial charge, g_A, using the RBC/UKQCD 2+1-flavor dynamical domain-wall fermion ensembles at lattice cutoff of about a^{-1}=1.4 GeV in a spatial volume (L = 4.6 fm)^3. The result from the ensemble with m_pi = 250 MeV pion mass, corresponding to the finite-size scaling parameter m_pi L sim 5.8, agrees well with an earlier result at a^{-1}=1.7 GeV, L = 2.8 fm, and m_pi = 420 MeV, with similar m_pi L. This suggests the systematic error from excited-state contamination is small in both ensembles and about 10-% deficit in g_A we are observing is likely a finite-size effect that scales with m_pi L. We also report the result from the lighter, m_pi = 170 MeV ensemble.