No Arabic abstract
Injection molding is one of the most popular manufacturing methods for the modeling of complex plastic objects. Faster numerical simulation of the technological process would allow for faster and cheaper design cycles of new products. In this work, we propose a baseline for a data processing pipeline that includes the extraction of data from Moldflow simulation projects and the prediction of the fill time and deflection distributions over 3-dimensional surfaces using machine learning models. We propose algorithms for engineering of features, including information of injector gates parameters that will mostly affect the time for plastic to reach the particular point of the form for fill time prediction, and geometrical features for deflection prediction. We propose and evaluate baseline machine learning models for fill time and deflection distribution prediction and provide baseline values of MSE and RMSE metrics. Finally, we measure the execution time of our solution and show that it significantly exceeds the time of simulation with Moldflow software: approximately 17 times and 14 times faster for mean and median total times respectively, comparing the times of all analysis stages for deflection prediction. Our solution has been implemented in a prototype web application that was approved by the management board of Fiat Chrysler Automobiles and Illogic SRL. As one of the promising applications of this surrogate modelling approach, we envision the use of trained models as a fast objective function in the task of optimization of technological parameters of the injection molding process (meaning optimal placement of gates), which could significantly aid engineers in this task, or even automate it.
Recently, artificial neural networks have been gaining momentum in the field of gravitational wave astronomy, for example in surrogate modelling of computationally expensive waveform models for binary black hole inspiral and merger. Surrogate modelling yields fast and accurate approximations of gravitational waves and neural networks have been used in the final step of interpolating the coefficients of the surrogate model for arbitrary waveforms outside the training sample. We investigate the existence of underlying structures in the empirical interpolation coefficients using autoencoders. We demonstrate that when the coefficient space is compressed to only two dimensions, a spiral structure appears, wherein the spiral angle is linearly related to the mass ratio. Based on this finding, we design a spiral module with learnable parameters, that is used as the first layer in a neural network, which learns to map the input space to the coefficients. The spiral module is evaluated on multiple neural network architectures and consistently achieves better speed-accuracy trade-off than baseline models. A thorough experimental study is conducted and the final result is a surrogate model which can evaluate millions of input parameters in a single forward pass in under 1ms on a desktop GPU, while the mismatch between the corresponding generated waveforms and the ground-truth waveforms is better than the compared baseline methods. We anticipate the existence of analogous underlying structures and corresponding computational gains also in the case of spinning black hole binaries.
The pipeline optimization problem in machine learning requires simultaneous optimization of pipeline structures and parameter adaptation of their elements. Having an elegant way to express these structures can help lessen the complexity in the management and analysis of their performances together with the different choices of optimization strategies. With these issues in mind, we created the AutoMLPipeline (AMLP) toolkit which facilitates the creation and evaluation of complex machine learning pipeline structures using simple expressions. We use AMLP to find optimal pipeline signatures, datamine them, and use these datamined features to speed-up learning and prediction. We formulated a two-stage pipeline optimization with surrogate modeling in AMLP which outperforms other AutoML approaches with a 4-hour time budget in less than 5 minutes of AMLP computation time.
Process mining deals with extraction of knowledge from business process execution logs. Traditional process mining tasks, like process model generation or conformance checking, rely on a minimalistic feature set where each event is characterized only by its case identifier, activity type, and timestamp. In contrast, the success of modern machine learning is based on models that take any available data as direct input and build layers of features automatically during training. In this work, we introduce ProcK (Process & Knowledge), a novel pipeline to build business process prediction models that take into account both sequential data in the form of event logs and rich semantic information represented in a graph-structured knowledge base. The hybrid approach enables ProcK to flexibly make use of all information residing in the databases of organizations. Components to extract inter-linked event logs and knowledge bases from relational databases are part of the pipeline. We demonstrate the power of ProcK by training it for prediction tasks on the OULAD e-learning dataset, where we achieve state-of-the-art performance on the tasks of predicting student dropout from courses and predicting their success. We also apply our method on a number of additional machine learning tasks, including exam score prediction and early predictions that only take into account data recorded during the first weeks of the courses.
Predicting and simulating aerodynamic fields for civil aircraft over wide flight envelopes represent a real challenge mainly due to significant numerical costs and complex flows. Surrogate models and reduced-order models help to estimate aerodynamic fields from a few well-selected simulations. However, their accuracy dramatically decreases when different physical regimes are involved. Therefore, a method of local non-intrusive reduced-order models using machine learning, called Local Decomposition Method, has been developed to mitigate this issue. This paper introduces several enhancements to this method and presents a complex application to an industrial-like three-dimensional aircraft configuration over a full flight envelope. The enhancements of the method cover several aspects: choosing the best number of models, estimating apriori errors, improving the adaptive sampling for parallel issues, and better handling the borders between local models. The application is supported by an analysis of the model behavior, with a focus on the machine learning methods and the local properties. The model achieves strong levels of accuracy, in particular with two sub-models: one for the subsonic regime and one for the transonic regime. These results highlight that local models and machine learning represent very promising solutions to deal with surrogate models for aerodynamics.
This article presents an original methodology for the prediction of steady turbulent aerodynamic fields. Due to the important computational cost of high-fidelity aerodynamic simulations, a surrogate model is employed to cope with the significant variations of several inflow conditions. Specifically, the Local Decomposition Method presented in this paper has been derived to capture nonlinear behaviors resulting from the presence of continuous and discontinuous signals. A combination of unsupervised and supervised learning algorithms is coupled with a physical criterion. It decomposes automatically the input parameter space, from a limited number of high-fidelity simulations, into subspaces. These latter correspond to different flow regimes. A measure of entropy identifies the subspace with the expected strongest non-linear behavior allowing to perform an active resampling on this low-dimensional structure. Local reduced-order models are built on each subspace using Proper Orthogonal Decomposition coupled with a multivariate interpolation tool. The methodology is assessed on the turbulent two-dimensional flow around the RAE2822 transonic airfoil. It exhibits a significant improvement in term of prediction accuracy for the Local Decomposition Method compared with the classical method of surrogate modeling for cases with different flow regimes.