Do you want to publish a course? Click here

Foldy-Wouthuysen transformation for gapped Dirac fermions in two-dimensional semiconducting materials and valley excitons under external fields

65   0   0.0 ( 0 )
 Added by Yao-Wen Chang
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this work, we provide a detailed derivation of Foldy-Wouthuysen (FW) transformation for two-dimensional (2D) gapped Dirac fermions under external fields and apply the formalism to study valley excitons in 2D semiconducting materials. Similar to relativistic quantum few-body problem, the gapped Dirac equation can be transformed into a Schr{o}dinger equation with relativistic correction terms. In this 2D materials system, the correction terms can be interpreted as the Berry-curvature effect. The Hamiltonian for a valley exciton in external fields can be written based on the FW transformed Dirac Hamiltonian. Various valley-dependent effects on excitons, such as fine-structure splittings of exciton energy levels, valley-selected exciton transitions, and exciton valley Zeeman effect are discussed within this framework.



rate research

Read More

We propose a robust and efficient way of controlling the optical spectra of two-dimensional materials and van der Waals heterostructures by quantum cavity embedding. The cavity light-matter coupling leads to the formation of exciton-polaritons, a superposition of photons and excitons. Our first principles study demonstrates a reordering and mixing of bright and dark excitons spectral features and in the case of a type II van-der-Waals heterostructure an inversion of intra and interlayer excitonic resonances. We further show that the cavity light-matter coupling strongly depends on the dielectric environment and can be controlled by encapsulating the active 2D crystal in another dielectric material. Our theoretical calculations are based on a newly developed non-perturbative many-body framework to solve the coupled electron-photon Schrodinger equation in a quantum-electrodynamical extension of the Bethe-Salpeter approach. This approach enables the ab-initio simulations of exciton-polariton states and their dispersion from weak to strong cavity light-matter coupling regimes. Our method is then extended to treat van der Waals heterostructures and encapsulated 2D materials using a simplified Mott-Wannier description of the excitons that can be applied to very large systems beyond reach for fully ab-initio approaches.
We study direct and indirect magnetoexcitons in Rydberg states in monolayers and double-layer heterostructures of Xenes (silicene, germanene, and stanene) in external parallel electric and magnetic fields, applied perpendicular to the monolayer and heterostructure. We calculate binding energies of magnetoexcitons for the Rydberg states 1$s$, 2$s$, 3$s$, and 4$s$, by numerical integration of the Schr{o}dinger equation using the Rytova-Keldysh potential for direct magnetoexciton and both the Rytova-Keldysh and Coulomb potentials for indirect excitons. Latter allows understanding a role of screening in Xenes. In the external perpendicular electric field, the buckled structure of the Xene monolayers leads to appearance of potential difference between sublattices allowing to tune electron and hole masses and, therefore, the binding energies and diamagnetic coefficients (DMCs) of magnetoexcitons. We report the energy contribution from electric and magnetic fields to the binding energies and DMCs. The tunability of the energy contribution of direct and indirect magnetoexcitons by electric and magnetic fields is demonstrated. It is also shown that DMCs of direct excitons can be tuned by the electric field, and the DMCs of indirect magnetoexcitons can be tuned by the electric field and manipulated by the number of h-BN layers. Therefore, these allowing the possibility of electronic devices design that can be controlled by external electric and magnetic fields and the number of h-BN layers. The calculations of the binding energies and DMCs of magnetoexcitons in Xenes monolayers and heterostructures are novel and can be compared with the experimental results when they will be available.
Exciton problem is solved in the two-dimensional Dirac model with allowance for strong electron-hole attraction. The exciton binding energy is assumed smaller than but comparable to the band gap. The exciton wavefunction is found in the momentum space as a superposition of all four two-particle states including electron and hole states with both positive and negative energies. The matrix element of exciton generation is shown to depend on the additional components of the exciton wavefunction. Both the Coulomb and the Rytova-Keldysh potentials are considered. The dependence of the binding energy on the coupling constant is analyzed for the ground and first excited exciton states. The binding energy and the oscillator strength are studied as functions of the environmental-dependent dielectric constant for real transition metal dichalcogenide monolayers. We demonstrate that the multicomponent nature of the exciton wavefunction is crucial for description of resonant optical properties of two-dimensional Dirac systems.
122 - Jiabin Yu , Chao-Xing Liu 2021
Electrons in low-temperature solids are governed by the non-relativistic Schr$ddot{o}$dinger equation, since the electron velocities are much slower than the speed of light. Remarkably, the low-energy quasi-particles given by electrons in various materials can behave as relativistic Dirac/Weyl fermions that obey the relativistic Dirac/Weyl equation. We refer to these materials as Dirac/Weyl materials, which provide a tunable platform to test relativistic quantum phenomena in table-top experiments. More interestingly, different types of physical fields in these Weyl/Dirac materials, such as magnetic fluctuations, lattice vibration, strain, and material inhomogeneity, can couple to the relativistic quasi-particles in a similar way as the $U(1)$ gauge coupling. As these fields do not have gauge-invariant dynamics in general, we refer to them as pseudo-gauge fields. In this chapter, we overview the concept and physical consequences of pseudo-gauge fields in Weyl/Dirac materials. In particular, we will demonstrate that pseudo-gauge fields can provide a unified understanding of a variety of physical phenomena, including chiral zero modes inside a magnetic vortex core of magnetic Weyl semimetals, a giant current response at magnetic resonance in magnetic topological insulators, and piezo-electromagnetic response in time-reversal invariant systems. These phenomena are deeply related to various concepts in high-energy physics, such as chiral anomaly and axion electrodynamics.
We investigate theoretically the switching characteristics of semiconducting carbon nanotubes connected to gold electrodes under an external (gate) electric field. We find that the external introduction of holes is necessary to account for the experimental observations. We identify metal-induced-gap states (MIGS) at the contacts and find that the MIGS of an undoped tube would not significantly affect the switching behavior, even for very short tube lengths. We also explore the miniaturization limits of nanotube transistors, and, on the basis of their switching ratio, we conclude that transistors with channels as short as 50AA would have adequate switching characteristics.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا