No Arabic abstract
The $f_0(1710)$ was previously proposed to be dynamically generated state by interactions between vector mesons. We extend the study of $f_0(1710)$ by including its coupling to channels of pseudoscalar mesons within coupled-channel approach. The channels involved are $K^*bar{K}^*,rhorho,omegaomega,phiphi, omegaphi,pipi,Kbar{K},etaeta$. We show that the pole assigned to $f_0(1710)$ does not change much. Then we calculate the partial decay widths of $f_0(1710) to K^*bar{K}^* to pipi,Kbar{K},etaeta$ as the coupled channel dynamically generated state as well as assuming it to be pure $K^*bar{K}^*$ molecule. In both cases the ratios of partial decay widths agree fairly with that in PDG.
Coupled-channel dynamics for scattering and production processes in partial-wave amplitudes is discussed from a perspective that emphasizes unitarity and analyticity. We elaborate on several methods that have driven to important results in hadron physics, either by themselves or in conjunction with effective field theory. We also develop and compare with the use of the Lippmann-Schwinger equation in near-threshold scattering. The final(initial)-state interactions are discussed in detail for the elastic and coupled-channel case. Emphasis has been put in the derivation and discussion of the methods presented, with some applications examined as important examples of their usage.
The momentum correlation functions of S = -2 baryon pairs (p Xi^- and Lambda Lambda) produced in high-energy pp and pA collisions are investigated on the basis of the coupled-channel formalism. The strong interaction is described by the coupled-channel HAL QCD potential obtained by the lattice QCD simulations near physical quark masses, while the hadronic source function is taken to be a static Gaussian form. The coupled-channel effect, the threshold difference, the realistic strong interaction, and the Coulomb interaction are fully taken into account for the first time in the femtoscopic analysis of baryon-baryon correlations. The characteristic features of the experimental data for the p Xi^- and Lambda Lambda pairs at LHC are reproduced quantitatively with a suitable choice of non-femtoscopic parameters and the source size. The agreement between theory and experiment indicates that the N Xi (Lambda Lambda) interaction is moderately (weakly) attractive without having a quasi-bound (bound) state.
We develop a robust method to extract the pole configuration of a given partial-wave amplitude. In our approach, a deep neural network is constructed where the statistical errors of the experimental data are taken into account. The teaching dataset is constructed using a generic S-matrix parametrization, ensuring that all the poles produced are independent of each other. The inclusion of statistical error results into a noisy classification dataset which we should solve using the curriculum method. As an application, we use the elastic $pi N$ amplitude in the $I(J^P)=1/2(1/2^{-})$ sector where $10^6$ amplitudes are produced by combining points in each error bar of the experimental data. We fed the amplitudes to the trained deep neural network and find that the enhancements in the $pi N$ amplitude are caused by one pole in each nearby unphysical sheet and at most two poles in the distant sheet. Finally, we show that the extracted pole configurations are independent of the way points in each error bar are drawn and combined, demonstrating the statistical robustness of our method.
The $a_0^0(980)-f_0(980)$ mixing is one of the most potential tools to learn about the nature of $a_0^0(980)$ and $f_0(980)$. Using the $f_0(980)$-$a_0^0(980)$ mixing intensity $xi_{af}$ measured recently at BESIII, we calculate the the branching ratio of the the isospin violation decay $J/psi rightarrowgammaeta_c rightarrow gamma pi^0 a_0^0(1450)rightarrow gamma pi^0 a_0^0(980)f_0(500)rightarrow gamma pi^0 f_0(980) f_0(500) rightarrow gamma pi^0 pi^+pi^- pi^+pi^-$. The value of the branching ratio is found to be $O(10^{-6})$, which can be observed with $10^{10}$ $J/psi$ events collected at BESIII. The narrow peak from the $f_0(980)$-$a_0^0(980)$ mixing in the $pi^+pi^-$ mass square spectrum can also be observed. In addition, we study the non-resonant decay $a_0^0(1450)rightarrow f_0(980) pi^+pi^-(text{non-resonant})$, which is dominated by the $a_0^0(980)$-$f_{0}(980)$ mixing. We find that the non-resonant decay $a_0^0(1450)rightarrow f_0(980) pi^+pi^-$ and the decay $a_0^0(1450)rightarrow f_0(980) f_0(500)$ can be combined to measure the mixing intensity $xi_{af}$ in experiment. These decays are the perfect complement to the decay $chi_{c1}rightarrow f_{0}(980)pi^{0}topi^{+}pi^{-}pi^{0}$ which had been observed at BESIII, the observations of them will make the measurement of the mixing intensity $xi_{af}$ more precisely.
We extend to larger unification groups an earlier study exploring the possibility of unification of gauge symmetries in theories with dynamical symmetry breaking. Based on our results, we comment on the outlook for models that seek to achieve this type of unification.