Do you want to publish a course? Click here

Further Study of an Approach to the Unification of Gauge Symmetries in Theories with Dynamical Symmetry Breaking

94   0   0.0 ( 0 )
 Added by Robert Shrock
 Publication date 2008
  fields
and research's language is English




Ask ChatGPT about the research

We extend to larger unification groups an earlier study exploring the possibility of unification of gauge symmetries in theories with dynamical symmetry breaking. Based on our results, we comment on the outlook for models that seek to achieve this type of unification.



rate research

Read More

We study perturbations that break gauge symmetries in lattice gauge theories. As a paradigmatic model, we consider the three-dimensional Abelian-Higgs (AH) model with an N-component scalar field and a noncompact gauge field, which is invariant under U(1) gauge and SU(N) transformations. We consider gauge-symmetry breaking perturbations that are quadratic in the gauge field, such as a photon mass term, and determine their effect on the critical behavior of the gauge-invariant model, focusing mainly on the continuous transitions associated with the charged fixed point of the AH field theory. We discuss their relevance and compute the (gauge-dependent) exponents that parametrize the departure from the critical behavior (continuum limit) of the gauge-invariant model. We also address the critical behavior of lattice AH models with broken gauge symmetry, showing an effective enlargement of the global symmetry, from U(N) to O(2N), which reflects a peculiar cyclic renormalization-group flow in the space of the lattice AH parameters and of the photon mass.
88 - Oleksandr Gromenko 2007
In this paper we examine a phase transition in $SU(N_{c})$ gauge theories governed by the existence of an infrared fixed point of the renormalization group $beta$ function. The nonlinear integral Schwinger-Dyson equation for a mass function of massless fermions is solved numerically using the exact expression of the running coupling in two-loop approximation for an SU(3) gauge theory. Based on the obtained solution of the Schwinger-Dyson equation, the value of the chiral condensate, $<bar{q}q>$, and the decay constant, $f_{pi}$, of bound states (mesons) are calculated for several values of fermion flavors $N_{f}$. We show that this kind of phase transition is a transition of finite order.
144 - Y. Hosotani , K. Oda , T. Ohnuma 2009
An SO(5)xU(1) gauge-Higgs unification model in the Randall-Sundrum warped space with top and bottom quarks is constructed. Additional fermions on the Planck brane make exotic particles heavy by effectively changing boundary conditions of bulk fermions from those determined by orbifold conditions. Gauge couplings of a top quark multiplet trigger electroweak symmetry breaking by the Hosotani mechanism, simultaneously giving a top quark the observed mass. The bottom quark mass is generated by combination of brane interactions and the Hosotani mechanism, where only one ratio of brane masses is relevant when the scale of brane masses is much larger than the Kaluza-Klein scale (sim 1.5 TeV). The Higgs mass is predicted to be 49.9 (53.5) GeV for the warp factor 10^{15} (10^{17}). The Wilson line phase turns out pi/2 and the Higgs couplings to W and Z vanish so that the LEP2 bound for the Higgs mass is evaded. In the flat spacetime limit the electroweak symmetry is unbroken.
QCD monopoles are magnetically charged quasiparticles whose Bose-Einstein condensation (BEC) at $T<T_c$ creates electric confinement and flux tubes. The magnetic scenario of QCD proposes that scattering on the non-condensed component of the monopole ensemble at $T>T_c$ plays an important role in explaining the properties of strongly coupled quark-gluon plasma (sQGP) near the deconfinement temperature. In this paper, we study the phenomenon of chiral symmetry breaking and its relation to magnetic monopoles. Specifically, we study the eigenvalue spectrum of the Dirac operator in the basis of fermionic zero modes in an SU(2) monopole background. We find that as the temperature approaches the deconfinement temperature $T_c$ from above, the eigenvalue spectrum has a finite density at $omega = 0$, indicating the presence of a chiral condensate. In addition, we find the critical scaling of the eigenvalue gap to be consistent with that of the correlation length in the 3d Ising model and the BEC transition of monopoles on the lattice.
We evaluate the so-called Bose-ghost propagator Q(p^2) for SU(2) gauge theory in minimal Landau gauge, considering lattice volumes up to 120^4 and physical lattice extents up to 13.5 f. In particular, we investigate discretization effects, as well as the infinite-volume and continuum limits. We recall that a nonzero value for this quantity provides direct evidence of BRST-symmetry breaking, related to the restriction of the functional measure to the first Gribov region. Our results show that the prediction (from cluster decomposition) for Q(p^2) in terms of gluon and ghost propagators is better satisfied as the continuum limit is approached.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا