Do you want to publish a course? Click here

Graph-PIT: Generalized permutation invariant training for continuous separation of arbitrary numbers of speakers

241   0   0.0 ( 0 )
 Added by Thilo von Neumann
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Automatic transcription of meetings requires handling of overlapped speech, which calls for continuous speech separation (CSS) systems. The uPIT criterion was proposed for utterance-level separation with neural networks and introduces the constraint that the total number of speakers must not exceed the number of output channels. When processing meeting-like data in a segment-wise manner, i.e., by separating overlapping segments independently and stitching adjacent segments to continuous output streams, this constraint has to be fulfilled for any segment. In this contribution, we show that this constraint can be significantly relaxed. We propose a novel graph-based PIT criterion, which casts the assignment of utterances to output channels in a graph coloring problem. It only requires that the number of concurrently active speakers must not exceed the number of output channels. As a consequence, the system can process an arbitrary number of speakers and arbitrarily long segments and thus can handle more diverse scenarios. Further, the stitching algorithm for obtaining a consistent output order in neighboring segments is of less importance and can even be eliminated completely, not the least reducing the computational effort. Experiments on meeting-style WSJ data show improvements in recognition performance over using the uPIT criterion.

rate research

Read More

Permutation invariant training (PIT) is a widely used training criterion for neural network-based source separation, used for both utterance-level separation with utterance-level PIT (uPIT) and separation of long recordings with the recently proposed Graph-PIT. When implemented naively, both suffer from an exponential complexity in the number of utterances to separate, rendering them unusable for large numbers of speakers or long realistic recordings. We present a decomposition of the PIT criterion into the computation of a matrix and a strictly monotonously increasing function so that the permutation or assignment problem can be solved efficiently with several search algorithms. The Hungarian algorithm can be used for uPIT and we introduce various algorithms for the Graph-PIT assignment problem to reduce the complexity to be polynomial in the number of utterances.
Single-microphone, speaker-independent speech separation is normally performed through two steps: (i) separating the specific speech sources, and (ii) determining the best output-label assignment to find the separation error. The second step is the main obstacle in training neural networks for speech separation. Recently proposed Permutation Invariant Training (PIT) addresses this problem by determining the output-label assignment which minimizes the separation error. In this study, we show that a major drawback of this technique is the overconfident choice of the output-label assignment, especially in the initial steps of training when the network generates unreliable outputs. To solve this problem, we propose Probabilistic PIT (Prob-PIT) which considers the output-label permutation as a discrete latent random variable with a uniform prior distribution. Prob-PIT defines a log-likelihood function based on the prior distributions and the separation errors of all permutations; it trains the speech separation networks by maximizing the log-likelihood function. Prob-PIT can be easily implemented by replacing the minimum function of PIT with a soft-minimum function. We evaluate our approach for speech separation on both TIMIT and CHiME datasets. The results show that the proposed method significantly outperforms PIT in terms of Signal to Distortion Ratio and Signal to Interference Ratio.
109 - Cong Han , Yi Luo , Chenda Li 2020
Leveraging additional speaker information to facilitate speech separation has received increasing attention in recent years. Recent research includes extracting target speech by using the target speakers voice snippet and jointly separating all participating speakers by using a pool of additional speaker signals, which is known as speech separation using speaker inventory (SSUSI). However, all these systems ideally assume that the pre-enrolled speaker signals are available and are only evaluated on simple data configurations. In realistic multi-talker conversations, the speech signal contains a large proportion of non-overlapped regions, where we can derive robust speaker embedding of individual talkers. In this work, we adopt the SSUSI model in long recordings and propose a self-informed, clustering-based inventory forming scheme for long recording, where the speaker inventory is fully built from the input signal without the need for external speaker signals. Experiment results on simulated noisy reverberant long recording datasets show that the proposed method can significantly improve the separation performance across various conditions.
Attractor-based end-to-end diarization is achieving comparable accuracy to the carefully tuned conventional clustering-based methods on challenging datasets. However, the main drawback is that it cannot deal with the case where the number of speakers is larger than the one observed during training. This is because its speaker counting relies on supervised learning. In this work, we introduce an unsupervised clustering process embedded in the attractor-based end-to-end diarization. We first split a sequence of frame-wise embeddings into short subsequences and then perform attractor-based diarization for each subsequence. Given subsequence-wise diarization results, inter-subsequence speaker correspondence is obtained by unsupervised clustering of the vectors computed from the attractors from all the subsequences. This makes it possible to produce diarization results of a large number of speakers for the whole recording even if the number of output speakers for each subsequence is limited. Experimental results showed that our method could produce accurate diarization results of an unseen number of speakers. Our method achieved 11.84 %, 28.33 %, and 19.49 % on the CALLHOME, DIHARD II, and DIHARD III datasets, respectively, each of which is better than the conventional end-to-end diarization methods.
124 - Jian Wu , Zhuo Chen , Sanyuan Chen 2021
Speech separation has been successfully applied as a frontend processing module of conversation transcription systems thanks to its ability to handle overlapped speech and its flexibility to combine with downstream tasks such as automatic speech recognition (ASR). However, a speech separation model often introduces target speech distortion, resulting in a sub-optimum word error rate (WER). In this paper, we describe our efforts to improve the performance of a single channel speech separation system. Specifically, we investigate a two-stage training scheme that firstly applies a feature level optimization criterion for pretraining, followed by an ASR-oriented optimization criterion using an end-to-end (E2E) speech recognition model. Meanwhile, to keep the model light-weight, we introduce a modified teacher-student learning technique for model compression. By combining those approaches, we achieve a absolute average WER improvement of 2.70% and 0.77% using models with less than 10M parameters compared with the previous state-of-the-art results on the LibriCSS dataset for utterance-wise evaluation and continuous evaluation, respectively
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا