Do you want to publish a course? Click here

WiC = TSV = WSD: On the Equivalence of Three Semantic Tasks

292   0   0.0 ( 0 )
 Added by Bradley Hauer
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

The WiC task has attracted considerable attention in the NLP community, as demonstrated by the popularity of the recent MCL-WiC SemEval task. WSD systems and lexical resources have been used for the WiC task, as well as for WiC dataset construction. TSV is another task related to both WiC and WSD. We aim to establish the exact relationship between WiC, TSV, and WSD. We demonstrate that these semantic classification problems can be pairwise reduced to each other, and so they are theoretically equivalent. We analyze the existing WiC datasets to validate this equivalence hypothesis. We conclude that our understanding of semantic tasks can be increased through the applications of tools from theoretical computer science. Our findings also suggests that more efficient and simpler methods for one of these tasks could be successfully applied in the other two.



rate research

Read More

This paper describes the LIAAD system that was ranked second place in the Word-in-Context challenge (WiC) featured in SemDeep-5. Our solution is based on a novel system for Word Sense Disambiguation (WSD) using contextual embeddings and full-inventory sense embeddings. We adapt this WSD system, in a straightforward manner, for the present task of detecting whether the same sense occurs in a pair of sentences. Additionally, we show that our solution is able to achieve competitive performance even without using the provided training or development sets, mitigating potential concerns related to task overfitting
109 - Shuo Huang , Zhuang Li , Lizhen Qu 2021
Semantic parsing maps natural language (NL) utterances into logical forms (LFs), which underpins many advanced NLP problems. Semantic parsers gain performance boosts with deep neural networks, but inherit vulnerabilities against adversarial examples. In this paper, we provide the empirical study on the robustness of semantic parsers in the presence of adversarial attacks. Formally, adversaries of semantic parsing are considered to be the perturbed utterance-LF pairs, whose utterances have exactly the same meanings as the original ones. A scalable methodology is proposed to construct robustness test sets based on existing benchmark corpora. Our results answered five research questions in measuring the sate-of-the-art parsers performance on robustness test sets, and evaluating the effect of data augmentation.
The Winograd Schema Challenge (WSC) and variants inspired by it have become important benchmarks for common-sense reasoning (CSR). Model performance on the WSC has quickly progressed from chance-level to near-human using neural language models trained on massive corpora. In this paper, we analyze the effects of varying degrees of overlap between these training corpora and the test instances in WSC-style tasks. We find that a large number of test instances overlap considerably with the corpora on which state-of-the-art models are (pre)trained, and that a significant drop in classification accuracy occurs when we evaluate models on instances with minimal overlap. Based on these results, we develop the KnowRef-60K dataset, which consists of over 60k pronoun disambiguation problems scraped from web data. KnowRef-60K is the largest corpus to date for WSC-style common-sense reasoning and exhibits a significantly lower proportion of overlaps with current pretraining corpora.
This paper introduces a novel method for the representation of images that is semantic by nature, addressing the question of computation intelligibility in computer vision tasks. More specifically, our proposition is to introduce what we call a semantic bottleneck in the processing pipeline, which is a crossing point in which the representation of the image is entirely expressed with natural language , while retaining the efficiency of numerical representations. We show that our approach is able to generate semantic representations that give state-of-the-art results on semantic content-based image retrieval and also perform very well on image classification tasks. Intelligibility is evaluated through user centered experiments for failure detection.
Many pairwise classification tasks, such as paraphrase detection and open-domain question answering, naturally have extreme label imbalance (e.g., $99.99%$ of examples are negatives). In contrast, many recent datasets heuristically choose examples to ensure label balance. We show that these heuristics lead to trained models that generalize poorly: State-of-the art models trained on QQP and WikiQA each have only $2.4%$ average precision when evaluated on realistically imbalanced test data. We instead collect training data with active learning, using a BERT-based embedding model to efficiently retrieve uncertain points from a very large pool of unlabeled utterance pairs. By creating balanced training data with more informative negative examples, active learning greatly improves average precision to $32.5%$ on QQP and $20.1%$ on WikiQA.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا