Do you want to publish a course? Click here

Multiple populations in low mass globular clusters: Palomar 13

75   0   0.0 ( 0 )
 Added by Baitian Tang
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Since the discovery of chemically peculiar stars in globular clusters in the last century, the study of multiple populations has become increasingly important, given that chemical inhomogeneity is found in almost all globular clusters. Despite various proposed theories attempting to explain this phenomenon, fitting all the observational evidence in globular clusters with one single theory remains notoriously difficult and currently unsuccessful. In order to improve existing models and motivate new ones, we are observing globular clusters at critical conditions, e.g., metal-rich end, metal-poor end, and low mass end. In this paper, we present our first attempt to investigate multiple populations in low mass globular clusters. We obtained low-resolution spectra around 4000 A of 30 members of the globular cluster Palomar 13 using OSIRIS/Multi-object spectrograph mounted at the Gran Telescopio Canarias. The membership of red giant branch stars is confirmed by the latest proper motions from Gaia DR2 and literature velocities. After comparing the measured CN and CH spectral indices with those of the stellar models, we found a clear sign of nitrogen variation among the red giant branch stars. Palomar 13 may be the lowest mass globular cluster showing multiple populations.



rate research

Read More

102 - Mark Gieles 2019
Globular clusters (GCs) display anomalous light element abundances (HeCNONaMgAl), resembling the yields of hot-hydrogen burning, but there is no consensus yet on the origin of these ubiquitous multiple populations. We present a model in which a super-massive star (SMS, >10^3 Msun) forms via stellar collisions during GC formation and pollutes the intra-cluster medium. The growth of the SMS finds a balance with the wind mass loss rate, such that the SMS can produce a significant fraction of the total GC mass in processed material, thereby overcoming the so-called mass-budget problem that plagues other models. Because of continuous rejuvenation, the SMS acts as a `conveyer-belt of hot-hydrogen burning yields with (relatively) low He abundances, in agreement with empirical constraints. Additionally, the amount of processed material per unit of GC mass correlates with GC mass, addressing the specific mass budget problem. We discuss uncertainties and tests of this new self-enrichment scenario.
We investigate the loss of low-mass stars in two of the faintest globular clusters known, AM 4 and Palomar 13 (Pal 13), using HST/WFC3 F606W and F814W photometry. To determine the physical properties of each cluster --- age, mass, metallicity, extinction, present day mass function (MF) --- we use the maximum likelihood color-magnitude diagram (CMD) fitting program MATCH and the Dartmouth, Padova and BaSTI stellar evolution models. For AM 4, the Dartmouth models provide the best match to the CMD and yield an age of >13 Gyr, metallicity log Z/Z_solar = -1.68 +/- 0.08, a distance modulus (m-M)_V = 17.47 +/- 0.03 and reddening A_V = 0.19 +/- 0.02. For Pal 13 the Dartmouth models give an age of 13.4 +/- 0.5 Gyr, log Z/Z_solar = -1.55 +/- 0.06, (m-M)_V = 17.17 +/- 0.02 and A_V = 0.43 +/- 0.01. We find that the systematic uncertainties due to choice in assumed stellar model greatly exceed the random uncertainties, highlighting the importance of using multiple stellar models when analyzing stellar populations. Assuming a single-sloped power law MF, we find that AM 4 and Pal 13 have spectral indices alpha = +0.68 +/- 0.34 and alpha = -1.67 +/- 0.25 (where a Salpeter MF has alpha = +1.35), respectively. Comparing our derived slopes with literature measurements of cluster integrated magnitude (M_V) and MF slope indicates that AM 4 is an outlier. Its MF slope is substantially steeper than clusters of comparable luminosity, while Pal 13 has a MF in line with the general trend. We discuss both primordial and dynamical origins for the unusual MF slope of AM 4 and tentatively favor the dynamical scenario. However, MF slopes of more low luminosity clusters are needed to verify this hypothesis.
Evidence that the multiple populations (MPs) are common properties of globular clusters (GCs) is accumulated over the past decades from clusters in the Milky Way and in its satellites. This finding has revived GC research, and suggested that their formation at high redshift must have been a much-more complex phenomenon than imagined before. However, most information on MPs is limited to nearby GCs. The main limitation is that most studies on MPs rely on resolved stars, facing a major challenge to investigate the MP phenomenon in distant galaxies. Here we search for integrated colors of old GCs that are sensitive to the multiple-population phenomenon. To do this, we exploit integrated magnitudes of simulated GCs with MPs, and multi-band Hubble Space Telescope photometry of 56 Galactic GCs, where MPs are widely studied, and characterized as part of the UV Legacy Survey of Galactic GCs. We find that both integrated $C_{rm F275W,F336W,F438W}$ and $m_{rm F275W}-m_{rm F814W}$ colors strongly correlate with the iron abundance of the host GC. In second order, the pseudo two-color diagram built with these integrated colors is sensitive to the MP phenomenon. In particular, once removed the dependence from cluster metallicity, the color residuals depend on the maximum internal helium variation within GCs and on the fraction of second-generation stars. This diagram, which we define here for Galactic GCs, has the potential of detecting and characterizing MPs from integrated photometry of old GCs, thus providing the possibility to extend their investigation outside the Local Group.
In the present work we analyzed seven globular clusters selected from their location in the Galactic bulge and with metallicity values in the range $-1.30lesssimrm{[Fe/H]}lesssim-0.50$. The aim of this work is first to derive cluster ages assuming single stellar populations, and secondly, to identify the stars from first (1G) and second generations (2G) from the main sequence, subgiant and red giant branches, and to derive their age differences. Based on a combination of UV and optical filters used in this project, we apply the Gaussian mixture models to distinguish the multiple stellar populations. Applying statistical isochrone fitting, we derive self-consistent ages, distances, metallicities, and reddening values for the sample clusters. An average of $12.3pm0.4$ Gyr was obtained both using Dartmouth and BaSTI (accounting atomic diffusion effects) isochrones, without a clear distinction between the moderately metal-poor and the more metal-rich bulge clusters, except for NGC 6717 and the inner halo NGC 6362 with $sim 13.5$ Gyr. We derived a weighted mean age difference between the multiple populations hosted by each globular cluster of $41pm170$ Myr adopting canonical He abundances; whereas for higher He in 2G stars, this difference reduces to $17pm170$ Myr, but with individual uncertainties of $500$ Myr.
Recent progress in studies of globular clusters has shown that they are not simple stellar populations, being rather made of multiple generations. Evidence stems both from photometry and spectroscopy. A new paradigm is then arising for the formation of massive star clusters, which includes several episodes of star formation. While this provides an explanation for several features of globular clusters, including the second parameter problem, it also opens new perspectives about the relation between globular clusters and the halo of our Galaxy, and by extension of all populations with a high specific frequency of globular clusters, such as, e.g., giant elliptical galaxies. We review progress in this area, focusing on the most recent studies. Several points remain to be properly understood, in particular those concerning the nature of the polluters producing the abundance pattern in the clusters and the typical timescale, the range of cluster masses where this phenomenon is active, and the relation between globular clusters and other satellites of our Galaxy.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا