No Arabic abstract
Using the fractional discrete Laplace operator for triangle meshes, we introduce a fractional combinatorial Calabi flow for discrete conformal structures on surfaces, which unifies and generalizes Chow-Luos combinatorial Ricci flow for Thurstons circle packings, Luos combinatorial Yamabe flow for vertex scaling and the combinatorial Calabi flow for discrete conformal structures on surfaces. For Thurstons Euclidean and hyperbolic circle packings on triangulated surfaces, we prove the longtime existence and global convergence of the fractional combinatorial Calabi flow. For vertex scalings on polyhedral surfaces, we do surgery on the fractional combinatorial Calabi flow by edge flipping under the Delaunay condition to handle the potential singularities along the flow. Using the discrete conformal theory established by Gu et al., we prove the longtime existence and global convergence of the fractional combinatorial Calabi flow with surgery.
This paper studies the combinatorial Yamabe flow on hyperbolic surfaces with boundary. It is proved by applying a variational principle that the length of boundary components is uniquely determined by the combinatorial conformal factor. The combinatorial Yamabe flow is a gradient flow of a concave function. The long time behavior of the flow and the geometric meaning is investigated.
Discrete conformal structure on polyhedral surfaces is a discrete analogue of the smooth conformal structure on surfaces that assigns discrete metrics by scalar functions defined on vertices. In this paper, we introduce combinatorial $alpha$-curvature for discrete conformal structures on polyhedral surfaces, which is a parameterized generalization of the classical combinatorial curvature. Then we prove the local and global rigidity of combinatorial $alpha$-curvature with respect to discrete conformal structures on polyhedral surfaces, which confirms parameterized Glickenstein rigidity conjecture. To study the Yamabe problem for combinatorial $alpha$-curvature, we introduce combinatorial $alpha$-Ricci flow for discrete conformal structures on polyhedral surfaces, which is a generalization of Chow-Luos combinatorial Ricci flow for Thurstons circle packings and Luos combinatorial Yamabe flow for vertex scaling on polyhedral surfaces. To handle the potential singularities of the combinatorial $alpha$-Ricci flow, we extend the flow through the singularities by extending the inner angles in triangles by constants. Under the existence of a discrete conformal structure with prescribed combinatorial curvature, the solution of extended combinatorial $alpha$-Ricci flow is proved to exist for all time and converge exponentially fast for any initial value. This confirms a parameterized generalization of another conjecture of Glickenstein on the convergence of combinatorial Ricci flow, gives an almost equivalent characterization of the solvability of Yamabe problem for combinatorial $alpha$-curvature in terms of combinatorial $alpha$-Ricci flow and provides an effective algorithm for finding discrete conformal structures with prescribed combinatorial $alpha$-curvatures.
This note is about a type of quantitative density of closed geodesics on closed hyperbolic surfaces. The main results are upper bounds on the length of the shortest closed geodesic that $varepsilon$-fills the surface.
Combinatorial Ricci flow on a cusped $3$-manifold is an analogue of Chow-Luos combinatorial Ricci flow on surfaces and Luos combinatorial Ricci flow on compact $3$-manifolds with boundary for finding complete hyperbolic metrics on cusped $3$-manifolds. Dual to Casson and Rivins program of maximizing the volume of angle structures, combinatorial Ricci flow finds the complete hyperbolic metric on a cusped $3$-manifold by minimizing the co-volume of decorated hyperbolic polyhedral metrics. The combinatorial Ricci flow may develop singularities. We overcome this difficulty by extending the flow through the potential singularities using Luo-Yangs extension. It is shown that the existence of a complete hyperbolic metric on a cusped $3$-manifold is equivalent to the convergence of the extended combinatorial Ricci flow, which gives a new characterization of existence of a complete hyperbolic metric on a cusped $3$-manifold dual to Casson and Rivins program. The extended combinatorial Ricci flow also provides an effective algorithm for finding complete hyperbolic metrics on cusped $3$-manifolds.
The lengths of geodesics on hyperbolic surfaces satisfy intriguing equations, known as identities, relating these lengths to geometric quantities of the surface. This paper is about a large family of identities that relate lengths of closed geodesics and orthogeodesics to boundary lengths or number of cusps. These include, as particular cases, identities due to Basmajian, to McShane and to Mirzakhani and Tan-Wong-Zhang. In stark contrast to previous identities, the identities presented here include the lengths taken among all closed geodesics.