Do you want to publish a course? Click here

Parameterized combinatorial curvatures and parameterized combinatorial curvature flows for discrete conformal structures on polyhedral surfaces

123   0   0.0 ( 0 )
 Added by Xu Xu
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

Discrete conformal structure on polyhedral surfaces is a discrete analogue of the smooth conformal structure on surfaces that assigns discrete metrics by scalar functions defined on vertices. In this paper, we introduce combinatorial $alpha$-curvature for discrete conformal structures on polyhedral surfaces, which is a parameterized generalization of the classical combinatorial curvature. Then we prove the local and global rigidity of combinatorial $alpha$-curvature with respect to discrete conformal structures on polyhedral surfaces, which confirms parameterized Glickenstein rigidity conjecture. To study the Yamabe problem for combinatorial $alpha$-curvature, we introduce combinatorial $alpha$-Ricci flow for discrete conformal structures on polyhedral surfaces, which is a generalization of Chow-Luos combinatorial Ricci flow for Thurstons circle packings and Luos combinatorial Yamabe flow for vertex scaling on polyhedral surfaces. To handle the potential singularities of the combinatorial $alpha$-Ricci flow, we extend the flow through the singularities by extending the inner angles in triangles by constants. Under the existence of a discrete conformal structure with prescribed combinatorial curvature, the solution of extended combinatorial $alpha$-Ricci flow is proved to exist for all time and converge exponentially fast for any initial value. This confirms a parameterized generalization of another conjecture of Glickenstein on the convergence of combinatorial Ricci flow, gives an almost equivalent characterization of the solvability of Yamabe problem for combinatorial $alpha$-curvature in terms of combinatorial $alpha$-Ricci flow and provides an effective algorithm for finding discrete conformal structures with prescribed combinatorial $alpha$-curvatures.



rate research

Read More

97 - Xu Xu , Chao Zheng 2021
This paper investigates the combinatorial $alpha$-curvature for vertex scaling of piecewise hyperbolic metrics on polyhedral surfaces, which is a parameterized generalization of the classical combinatorial curvature. A discrete uniformization theorem for combinatorial $alpha$-curvature is established, which generalizes Gu-Guo-Luo-Sun-Wus discrete uniformization theorem for classical combinatorial curvature. We further introduce combinatorial $alpha$-Yamabe flow and combinatorial $alpha$-Calabi flow for vertex scaling to find piecewise hyperbolic metrics with prescribed combinatorial $alpha$-curvatures. To handle the potential singularities along the combinatorial curvature flows, we do surgery along the flows by edge flipping. Using the discrete conformal theory established by Gu-Guo-Luo-Sun-Wu, we prove the longtime existence and convergence of combinatorial $alpha$-Yamabe flow and combinatorial $alpha$-Calabi flow with surgery, which provide effective algorithms for finding piecewise hyperbolic metrics with prescribed combinatorial $alpha$-curvatures.
117 - Tianqi Wu , Xu Xu 2021
Using the fractional discrete Laplace operator for triangle meshes, we introduce a fractional combinatorial Calabi flow for discrete conformal structures on surfaces, which unifies and generalizes Chow-Luos combinatorial Ricci flow for Thurstons circle packings, Luos combinatorial Yamabe flow for vertex scaling and the combinatorial Calabi flow for discrete conformal structures on surfaces. For Thurstons Euclidean and hyperbolic circle packings on triangulated surfaces, we prove the longtime existence and global convergence of the fractional combinatorial Calabi flow. For vertex scalings on polyhedral surfaces, we do surgery on the fractional combinatorial Calabi flow by edge flipping under the Delaunay condition to handle the potential singularities along the flow. Using the discrete conformal theory established by Gu et al., we prove the longtime existence and global convergence of the fractional combinatorial Calabi flow with surgery.
167 - Xianfeng Gu , Ren Guo , Feng Luo 2014
A discrete conformality for hyperbolic polyhedral surfaces is introduced in this paper. This discrete conformality is shown to be computable. It is proved that each hyperbolic polyhedral metric on a closed surface is discrete conformal to a unique hyperbolic polyhedral metric with a given discrete curvature satisfying Gauss-Bonnet formula. Furthermore, the hyperbolic polyhedral metric with given curvature can be obtained using a discrete Yamabe flow with surgery. In particular, each hyperbolic polyhedral metric on a closed surface with negative Euler characteristic is discrete conformal to a unique hyperbolic metric.
136 - Ren Guo 2010
This paper studies the combinatorial Yamabe flow on hyperbolic surfaces with boundary. It is proved by applying a variational principle that the length of boundary components is uniquely determined by the combinatorial conformal factor. The combinatorial Yamabe flow is a gradient flow of a concave function. The long time behavior of the flow and the geometric meaning is investigated.
156 - Feng Luo , Jian Sun , Tianqi Wu 2020
The paper proves a result on the convergence of discrete conformal maps to the Riemann mappings for Jordan domains. It is a counterpart of Rodin-Sullivans theorem on convergence of circle packing mappings to the Riemann mapping in the new setting of discrete conformality. The proof follows the same strategy that Rodin-Sullivan used by establishing a rigidity result for regular hexagonal triangulations of the plane and estimating the quasiconformal constants associated to the discrete conformal maps.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا