Do you want to publish a course? Click here

HTF: Homogeneous Tree Framework for Differentially-Private Release of Location Data

67   0   0.0 ( 0 )
 Added by Sina Shaham
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Mobile apps that use location data are pervasive, spanning domains such as transportation, urban planning and healthcare. Important use cases for location data rely on statistical queries, e.g., identifying hotspots where users work and travel. Such queries can be answered efficiently by building histograms. However, precise histograms can expose sensitive details about individual users. Differential privacy (DP) is a mature and widely-adopted protection model, but most approaches for DP-compliant histograms work in a data-independent fashion, leading to poor accuracy. The few proposed data-dependent techniques attempt to adjust histogram partitions based on dataset characteristics, but they do not perform well due to the addition of noise required to achieve DP. We identify density homogeneity as a main factor driving the accuracy of DP-compliant histograms, and we build a data structure that splits the space such that data density is homogeneous within each resulting partition. We show through extensive experiments on large-scale real-world data that the proposed approach achieves superior accuracy compared to existing approaches.



rate research

Read More

Outlier detection plays a significant role in various real world applications such as intrusion, malfunction, and fraud detection. Traditionally, outlier detection techniques are applied to find outliers in the context of the whole dataset. However, this practice neglects contextual outliers, that are not outliers in the whole dataset but in some specific neighborhoods. Contextual outliers are particularly important in data exploration and targeted anomaly explanation and diagnosis. In these scenarios, the data owner computes the following information: i) The attributes that contribute to the abnormality of an outlier (metric), ii) Contextual description of the outliers neighborhoods (context), and iii) The utility score of the context, e.g. its strength in showing the outliers significance, or in relation to a particular explanation for the outlier. However, revealing the outliers context leaks information about the other individuals in the population as well, violating their privacy. We address the issue of population privacy violations in this paper, and propose a solution for the two main challenges. In this setting, the data owner is required to release a valid context for the queried record, i.e. a context in which the record is an outlier. Hence, the first major challenge is that the privacy technique must preserve the validity of the context for each record. We propose techniques to protect the privacy of individuals through a relaxed notion of differential privacy to satisfy this requirement. The second major challenge is applying the proposed techniques efficiently, as they impose intensive computation to the base algorithm. To overcome this challenge, we propose a graph structure to map the contexts to, and introduce differentially private graph search algorithms as efficient solutions for the computation problem caused by differential privacy techniques.
The adoption of differential privacy is growing but the complexity of designing private, efficient and accurate algorithms is still high. We propose a novel programming framework and system, Ektelo, for implementing both existing and new privacy algorithms. For the task of answering linear counting queries, we show that nearly all existing algorithms can be composed from operators, each conforming to one of a small number of operator classes. While past programming frameworks have helped to ensure the privacy of programs, the novelty of our framework is its significant support for authoring accurate and efficient (as well as private) programs. After describing the design and architecture of the Ektelo system, we show that Ektelo is expressive, allows for safer implementations through code reuse, and that it allows both privacy novices and experts to easily design algorithms. We demonstrate the use of Ektelo by designing several new state-of-the-art algorithms.
Organizations are increasingly relying on data to support decisions. When data contains private and sensitive information, the data owner often desires to publish a synthetic database instance that is similarly useful as the true data, while ensuring the privacy of individual data records. Existing differentially private data synthesis methods aim to generate useful data based on applications, but they fail in keeping one of the most fundamental data properties of the structured data -- the underlying correlations and dependencies among tuples and attributes (i.e., the structure of the data). This structure is often expressed as integrity and schema constraints, or with a probabilistic generative process. As a result, the synthesized data is not useful for any downstream tasks that require this structure to be preserved. This work presents Kamino, a data synthesis system to ensure differential privacy and to preserve the structure and correlations present in the original dataset. Kamino takes as input of a database instance, along with its schema (including integrity constraints), and produces a synthetic database instance with differential privacy and structure preservation guarantees. We empirically show that while preserving the structure of the data, Kamino achieves comparable and even better usefulness in applications of training classification models and answering marginal queries than the state-of-the-art methods of differentially private data synthesis.
For the modeling, design and planning of future energy transmission networks, it is vital for stakeholders to access faithful and useful power flow data, while provably maintaining the privacy of business confidentiality of service providers. This critical challenge has recently been somewhat addressed in [1]. This paper significantly extends this existing work. First, we reduce the potential leakage information by proposing a fundamentally different post-processing method, using public information of grid losses rather than power dispatch, which achieve a higher level of privacy protection. Second, we protect more sensitive parameters, i.e., branch shunt susceptance in addition to series impedance (complete pi-model). This protects power flow data for the transmission high-voltage networks, using differentially private transformations that maintain the optimal power flow consistent with, and faithful to, expected model behaviour. Third, we tested our approach at a larger scale than previous work, using the PGLib-OPF test cases [10]. This resulted in the successful obfuscation of up to a 4700-bus system, which can be successfully solved with faithfulness of parameters and good utility to data analysts. Our approach addresses a more feasible and realistic scenario, and provides higher than state-of-the-art privacy guarantees, while maintaining solvability, fidelity and feasibility of the system.
Mobile apps and location-based services generate large amounts of location data that can benefit research on traffic optimization, context-aware notifications and public health (e.g., spread of contagious diseases). To preserve individual privacy, one must first sanitize location data, which is commonly done using the powerful differential privacy (DP) concept. However, existing solutions fall short of properly capturing density patterns and correlations that are intrinsic to spatial data, and as a result yield poor accuracy. We propose a machine-learning based approach for answering statistical queries on location data with DP guarantees. We focus on countering the main source of error that plagues existing approaches (namely, uniformity error), and we design a neural database system that models spatial datasets such that important density and correlation features present in the data are preserved, even when DP-compliant noise is added. We employ a set of neural networks that learn from diverse regions of the dataset and at varying granularities, leading to superior accuracy. We also devise a framework for effective system parameter tuning on top of public data, which helps practitioners set important system parameters without having to expend scarce privacy budget. Extensive experimental results on real datasets with heterogeneous characteristics show that our proposed approach significantly outperforms the state of the art.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا