Do you want to publish a course? Click here

Kamino: Constraint-Aware Differentially Private Data Synthesis

101   0   0.0 ( 0 )
 Added by Chang Ge
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Organizations are increasingly relying on data to support decisions. When data contains private and sensitive information, the data owner often desires to publish a synthetic database instance that is similarly useful as the true data, while ensuring the privacy of individual data records. Existing differentially private data synthesis methods aim to generate useful data based on applications, but they fail in keeping one of the most fundamental data properties of the structured data -- the underlying correlations and dependencies among tuples and attributes (i.e., the structure of the data). This structure is often expressed as integrity and schema constraints, or with a probabilistic generative process. As a result, the synthesized data is not useful for any downstream tasks that require this structure to be preserved. This work presents Kamino, a data synthesis system to ensure differential privacy and to preserve the structure and correlations present in the original dataset. Kamino takes as input of a database instance, along with its schema (including integrity constraints), and produces a synthetic database instance with differential privacy and structure preservation guarantees. We empirically show that while preserving the structure of the data, Kamino achieves comparable and even better usefulness in applications of training classification models and answering marginal queries than the state-of-the-art methods of differentially private data synthesis.



rate research

Read More

Outlier detection plays a significant role in various real world applications such as intrusion, malfunction, and fraud detection. Traditionally, outlier detection techniques are applied to find outliers in the context of the whole dataset. However, this practice neglects contextual outliers, that are not outliers in the whole dataset but in some specific neighborhoods. Contextual outliers are particularly important in data exploration and targeted anomaly explanation and diagnosis. In these scenarios, the data owner computes the following information: i) The attributes that contribute to the abnormality of an outlier (metric), ii) Contextual description of the outliers neighborhoods (context), and iii) The utility score of the context, e.g. its strength in showing the outliers significance, or in relation to a particular explanation for the outlier. However, revealing the outliers context leaks information about the other individuals in the population as well, violating their privacy. We address the issue of population privacy violations in this paper, and propose a solution for the two main challenges. In this setting, the data owner is required to release a valid context for the queried record, i.e. a context in which the record is an outlier. Hence, the first major challenge is that the privacy technique must preserve the validity of the context for each record. We propose techniques to protect the privacy of individuals through a relaxed notion of differential privacy to satisfy this requirement. The second major challenge is applying the proposed techniques efficiently, as they impose intensive computation to the base algorithm. To overcome this challenge, we propose a graph structure to map the contexts to, and introduce differentially private graph search algorithms as efficient solutions for the computation problem caused by differential privacy techniques.
In differential privacy (DP), a challenging problem is to generate synthetic datasets that efficiently capture the useful information in the private data. The synthetic dataset enables any task to be done without privacy concern and modification to existing algorithms. In this paper, we present PrivSyn, the first automatic synthetic data generation method that can handle general tabular datasets (with 100 attributes and domain size $>2^{500}$). PrivSyn is composed of a new method to automatically and privately identify correlations in the data, and a novel method to generate sample data from a dense graphic model. We extensively evaluate different methods on multiple datasets to demonstrate the performance of our method.
While rich medical datasets are hosted in hospitals distributed across the world, concerns on patients privacy is a barrier against using such data to train deep neural networks (DNNs) for medical diagnostics. We propose Dopamine, a system to train DNNs on distributed datasets, which employs federated learning (FL) with differentially-private stochastic gradient descent (DPSGD), and, in combination with secure aggregation, can establish a better trade-off between differential privacy (DP) guarantee and DNNs accuracy than other approaches. Results on a diabetic retinopathy~(DR) task show that Dopamine provides a DP guarantee close to the centralized training counterpart, while achieving a better classification accuracy than FL with parallel DP where DPSGD is applied without coordination. Code is available at https://github.com/ipc-lab/private-ml-for-health.
Mobile apps that use location data are pervasive, spanning domains such as transportation, urban planning and healthcare. Important use cases for location data rely on statistical queries, e.g., identifying hotspots where users work and travel. Such queries can be answered efficiently by building histograms. However, precise histograms can expose sensitive details about individual users. Differential privacy (DP) is a mature and widely-adopted protection model, but most approaches for DP-compliant histograms work in a data-independent fashion, leading to poor accuracy. The few proposed data-dependent techniques attempt to adjust histogram partitions based on dataset characteristics, but they do not perform well due to the addition of noise required to achieve DP. We identify density homogeneity as a main factor driving the accuracy of DP-compliant histograms, and we build a data structure that splits the space such that data density is homogeneous within each resulting partition. We show through extensive experiments on large-scale real-world data that the proposed approach achieves superior accuracy compared to existing approaches.
Common datasets have the form of elements with keys (e.g., transactions and products) and the goal is to perform analytics on the aggregated form of key and frequency pairs. A weighted sample of keys by (a function of) frequency is a highly versatile summary that provides a sparse set of representative keys and supports approximate evaluations of query statistics. We propose private weighted sampling (PWS): A method that ensures element-level differential privacy while retaining, to the extent possible, the utility of a respective non-private weighted sample. PWS maximizes the reporting probabilities of keys and estimation quality of a broad family of statistics. PWS improves over the state of the art also for the well-studied special case of private histograms, when no sampling is performed. We empirically demonstrate significant performance gains compared with prior baselines: 20%-300% increase in key reporting for common Zipfian frequency distributions and accuracy for $times 2$-$ 8$ lower frequencies in estimation tasks. Moreover, PWS is applied as a simple post-processing of a non-private sample, without requiring the original data. This allows for seamless integration with existing implementations of non-private schemes and retaining the efficiency of schemes designed for resource-constrained settings such as massive distributed or streamed data. We believe that due to practicality and performance, PWS may become a method of choice in applications where privacy is desired.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا