Do you want to publish a course? Click here

Fast Wireless Sensor Anomaly Detection based on Data Stream in Edge Computing Enabled Smart Greenhouse

83   0   0.0 ( 0 )
 Added by Chao Yan
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Edge computing enabled smart greenhouse is a representative application of Internet of Things technology, which can monitor the environmental information in real time and employ the information to contribute to intelligent decision-making. In the process, anomaly detection for wireless sensor data plays an important role. However, traditional anomaly detection algorithms originally designed for anomaly detection in static data have not properly considered the inherent characteristics of data stream produced by wireless sensor such as infiniteness, correlations and concept drift, which may pose a considerable challenge on anomaly detection based on data stream, and lead to low detection accuracy and efficiency. First, data stream usually generates quickly which means that it is infinite and enormous, so any traditional off-line anomaly detection algorithm that attempts to store the whole dataset or to scan the dataset multiple times for anomaly detection will run out of memory space. Second, there exist correlations among different data streams, which traditional algorithms hardly consider. Third, the underlying data generation process or data distribution may change over time. Thus, traditional anomaly detection algorithms with no model update will lose their effects. Considering these issues, a novel method (called DLSHiForest) on basis of Locality-Sensitive Hashing and time window technique in this paper is proposed to solve these problems while achieving accurate and efficient detection. Comprehensive experiments are executed using real-world agricultural greenhouse dataset to demonstrate the feasibility of our approach. Experimental results show that our proposal is practicable in addressing challenges of traditional anomaly detection while ensuring accuracy and efficiency.



rate research

Read More

Advances in deep neural networks (DNN) greatly bolster real-time detection of anomalous IoT data. However, IoT devices can barely afford complex DNN models due to limited computational power and energy supply. While one can offload anomaly detection tasks to the cloud, it incurs long delay and requires large bandwidth when thousands of IoT devices stream data to the cloud concurrently. In this paper, we propose an adaptive anomaly detection approach for hierarchical edge computing (HEC) systems to solve this problem. Specifically, we first construct three anomaly detection DNN models of increasing complexity, and associate them with the three layers of HEC from bottom to top, i.e., IoT devices, edge servers, and cloud. Then, we design an adaptive scheme to select one of the models based on the contextual information extracted from input data, to perform anomaly detection. The selection is formulated as a contextual bandit problem and is characterized by a single-step Markov decision process, with an objective of achieving high detection accuracy and low detection delay simultaneously. We evaluate our proposed approach using a real IoT dataset, and demonstrate that it reduces detection delay by 84% while maintaining almost the same accuracy as compared to offloading detection tasks to the cloud. In addition, our evaluation also shows that it outperforms other baseline schemes.
Anomaly detection is concerned with identifying data patterns that deviate remarkably from the expected behaviour. This is an important research problem, due to its broad set of application domains, from data analysis to e-health, cybersecurity, predictive maintenance, fault prevention, and industrial automation. Herein, we review state-of-the-art methods that may be employed to detect anomalies in the specific area of sensor systems, which poses hard challenges in terms of information fusion, data volumes, data speed, and network/energy efficiency, to mention but the most pressing ones. In this context, anomaly detection is a particularly hard problem, given the need to find computing-energy accuracy trade-offs in a constrained environment. We taxonomize methods ranging from conventional techniques (statistical methods, time-series analysis, signal processing, etc.) to data-driven techniques (supervised learning, reinforcement learning, deep learning, etc.). We also look at the impact that different architectural environments (Cloud, Fog, Edge) can have on the sensors ecosystem. The review points to the most promising intelligent-sensing methods, and pinpoints a set of interesting open issues and challenges.
Advances in deep neural networks (DNN) greatly bolster real-time detection of anomalous IoT data. However, IoT devices can hardly afford complex DNN models, and offloading anomaly detection tasks to the cloud incurs long delay. In this paper, we propose and build a demo for an adaptive anomaly detection approach for distributed hierarchical edge computing (HEC) systems to solve this problem, for both univariate and multivariate IoT data. First, we construct multiple anomaly detection DNN models with increasing complexity, and associate each model with a layer in HEC from bottom to top. Then, we design an adaptive scheme to select one of these models on the fly, based on the contextual information extracted from each input data. The model selection is formulated as a contextual bandit problem characterized by a single-step Markov decision process, and is solved using a reinforcement learning policy network. We build an HEC testbed, implement our proposed approach, and evaluate it using real IoT datasets. The demo shows that our proposed approach significantly reduces detection delay (e.g., by 71.4% for univariate dataset) without sacrificing accuracy, as compared to offloading detection tasks to the cloud. We also compare it with other baseline schemes and demonstrate that it achieves the best accuracy-delay tradeoff. Our demo is also available online: https://rebrand.ly/91a71
The advances in deep neural networks (DNN) have significantly enhanced real-time detection of anomalous data in IoT applications. However, the complexity-accuracy-delay dilemma persists: complex DNN models offer higher accuracy, but typical IoT devices can barely afford the computation load, and the remedy of offloading the load to the cloud incurs long delay. In this paper, we address this challenge by proposing an adaptive anomaly detection scheme with hierarchical edge computing (HEC). Specifically, we first construct multiple anomaly detection DNN models with increasing complexity, and associate each of them to a corresponding HEC layer. Then, we design an adaptive model selection scheme that is formulated as a contextual-bandit problem and solved by using a reinforcement learning policy network. We also incorporate a parallelism policy training method to accelerate the training process by taking advantage of distributed models. We build an HEC testbed using real IoT devices, implement and evaluate our contextual-bandit approach with both univariate and multivariate IoT datasets. In comparison with both baseline and state-of-the-art schemes, our adaptive approach strikes the best accuracy-delay tradeoff on the univariate dataset, and achieves the best accuracy and F1-score on the multivariate dataset with only negligibly longer delay than the best (but inflexible) scheme.
The increasing use of Internet-of-Things (IoT) devices for monitoring a wide spectrum of applications, along with the challenges of big data streaming support they often require for data analysis, is nowadays pushing for an increased attention to the emerging edge computing paradigm. In particular, smart approaches to manage and analyze data directly on the network edge, are more and more investigated, and Artificial Intelligence (AI) powered edge computing is envisaged to be a promising direction. In this paper, we focus on Data Centers (DCs) and Supercomputers (SCs), where a new generation of high-resolution monitoring systems is being deployed, opening new opportunities for analysis like anomaly detection and security, but introducing new challenges for handling the vast amount of data it produces. In detail, we report on a novel lightweight and scalable approach to increase the security of DCs/SCs, that involves AI-powered edge computing on high-resolution power consumption. The method -- called pAElla -- targets real-time Malware Detection (MD), it runs on an out-of-band IoT-based monitoring system for DCs/SCs, and involves Power Spectral Density of power measurements, along with AutoEncoders. Results are promising, with an F1-score close to 1, and a False Alarm and Malware Miss rate close to 0%. We compare our method with State-of-the-Art MD techniques and show that, in the context of DCs/SCs, pAElla can cover a wider range of malware, significantly outperforming SoA approaches in terms of accuracy. Moreover, we propose a methodology for online training suitable for DCs/SCs in production, and release open dataset and code.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا