No Arabic abstract
Advances in deep neural networks (DNN) greatly bolster real-time detection of anomalous IoT data. However, IoT devices can barely afford complex DNN models due to limited computational power and energy supply. While one can offload anomaly detection tasks to the cloud, it incurs long delay and requires large bandwidth when thousands of IoT devices stream data to the cloud concurrently. In this paper, we propose an adaptive anomaly detection approach for hierarchical edge computing (HEC) systems to solve this problem. Specifically, we first construct three anomaly detection DNN models of increasing complexity, and associate them with the three layers of HEC from bottom to top, i.e., IoT devices, edge servers, and cloud. Then, we design an adaptive scheme to select one of the models based on the contextual information extracted from input data, to perform anomaly detection. The selection is formulated as a contextual bandit problem and is characterized by a single-step Markov decision process, with an objective of achieving high detection accuracy and low detection delay simultaneously. We evaluate our proposed approach using a real IoT dataset, and demonstrate that it reduces detection delay by 84% while maintaining almost the same accuracy as compared to offloading detection tasks to the cloud. In addition, our evaluation also shows that it outperforms other baseline schemes.
Advances in deep neural networks (DNN) greatly bolster real-time detection of anomalous IoT data. However, IoT devices can hardly afford complex DNN models, and offloading anomaly detection tasks to the cloud incurs long delay. In this paper, we propose and build a demo for an adaptive anomaly detection approach for distributed hierarchical edge computing (HEC) systems to solve this problem, for both univariate and multivariate IoT data. First, we construct multiple anomaly detection DNN models with increasing complexity, and associate each model with a layer in HEC from bottom to top. Then, we design an adaptive scheme to select one of these models on the fly, based on the contextual information extracted from each input data. The model selection is formulated as a contextual bandit problem characterized by a single-step Markov decision process, and is solved using a reinforcement learning policy network. We build an HEC testbed, implement our proposed approach, and evaluate it using real IoT datasets. The demo shows that our proposed approach significantly reduces detection delay (e.g., by 71.4% for univariate dataset) without sacrificing accuracy, as compared to offloading detection tasks to the cloud. We also compare it with other baseline schemes and demonstrate that it achieves the best accuracy-delay tradeoff. Our demo is also available online: https://rebrand.ly/91a71
The advances in deep neural networks (DNN) have significantly enhanced real-time detection of anomalous data in IoT applications. However, the complexity-accuracy-delay dilemma persists: complex DNN models offer higher accuracy, but typical IoT devices can barely afford the computation load, and the remedy of offloading the load to the cloud incurs long delay. In this paper, we address this challenge by proposing an adaptive anomaly detection scheme with hierarchical edge computing (HEC). Specifically, we first construct multiple anomaly detection DNN models with increasing complexity, and associate each of them to a corresponding HEC layer. Then, we design an adaptive model selection scheme that is formulated as a contextual-bandit problem and solved by using a reinforcement learning policy network. We also incorporate a parallelism policy training method to accelerate the training process by taking advantage of distributed models. We build an HEC testbed using real IoT devices, implement and evaluate our contextual-bandit approach with both univariate and multivariate IoT datasets. In comparison with both baseline and state-of-the-art schemes, our adaptive approach strikes the best accuracy-delay tradeoff on the univariate dataset, and achieves the best accuracy and F1-score on the multivariate dataset with only negligibly longer delay than the best (but inflexible) scheme.
Given a stream of graph edges from a dynamic graph, how can we assign anomaly scores to edges in an online manner, for the purpose of detecting unusual behavior, using constant time and memory? Existing approaches aim to detect individually surprising edges. In this work, we propose MIDAS, which focuses on detecting microcluster anomalies, or suddenly arriving groups of suspiciously similar edges, such as lockstep behavior, including denial of service attacks in network traffic data. We further propose MIDAS-F, to solve the problem by which anomalies are incorporated into the algorithms internal states, creating a `poisoning effect that can allow future anomalies to slip through undetected. MIDAS-F introduces two modifications: 1) We modify the anomaly scoring function, aiming to reduce the `poisoning effect of newly arriving edges; 2) We introduce a conditional merge step, which updates the algorithms data structures after each time tick, but only if the anomaly score is below a threshold value, also to reduce the `poisoning effect. Experiments show that MIDAS-F has significantly higher accuracy than MIDAS. MIDAS has the following properties: (a) it detects microcluster anomalies while providing theoretical guarantees about its false positive probability; (b) it is online, thus processing each edge in constant time and constant memory, and also processes the data orders-of-magnitude faster than state-of-the-art approaches; (c) it provides up to 62% higher ROC-AUC than state-of-the-art approaches.
Edge computing enabled smart greenhouse is a representative application of Internet of Things technology, which can monitor the environmental information in real time and employ the information to contribute to intelligent decision-making. In the process, anomaly detection for wireless sensor data plays an important role. However, traditional anomaly detection algorithms originally designed for anomaly detection in static data have not properly considered the inherent characteristics of data stream produced by wireless sensor such as infiniteness, correlations and concept drift, which may pose a considerable challenge on anomaly detection based on data stream, and lead to low detection accuracy and efficiency. First, data stream usually generates quickly which means that it is infinite and enormous, so any traditional off-line anomaly detection algorithm that attempts to store the whole dataset or to scan the dataset multiple times for anomaly detection will run out of memory space. Second, there exist correlations among different data streams, which traditional algorithms hardly consider. Third, the underlying data generation process or data distribution may change over time. Thus, traditional anomaly detection algorithms with no model update will lose their effects. Considering these issues, a novel method (called DLSHiForest) on basis of Locality-Sensitive Hashing and time window technique in this paper is proposed to solve these problems while achieving accurate and efficient detection. Comprehensive experiments are executed using real-world agricultural greenhouse dataset to demonstrate the feasibility of our approach. Experimental results show that our proposal is practicable in addressing challenges of traditional anomaly detection while ensuring accuracy and efficiency.
Since edge device failures (i.e., anomalies) seriously affect the production of industrial products in Industrial IoT (IIoT), accurately and timely detecting anomalies is becoming increasingly important. Furthermore, data collected by the edge device may contain the users private data, which is challenging the current detection approaches as user privacy is calling for the public concern in recent years. With this focus, this paper proposes a new communication-efficient on-device federated learning (FL)-based deep anomaly detection framework for sensing time-series data in IIoT. Specifically, we first introduce a FL framework to enable decentralized edge devices to collaboratively train an anomaly detection model, which can improve its generalization ability. Second, we propose an Attention Mechanism-based Convolutional Neural Network-Long Short Term Memory (AMCNN-LSTM) model to accurately detect anomalies. The AMCNN-LSTM model uses attention mechanism-based CNN units to capture important fine-grained features, thereby preventing memory loss and gradient dispersion problems. Furthermore, this model retains the advantages of LSTM unit in predicting time series data. Third, to adapt the proposed framework to the timeliness of industrial anomaly detection, we propose a gradient compression mechanism based on Top-textit{k} selection to improve communication efficiency. Extensive experiment studies on four real-world datasets demonstrate that the proposed framework can accurately and timely detect anomalies and also reduce the communication overhead by 50% compared to the federated learning framework that does not use a gradient compression scheme.