No Arabic abstract
We compute the internal modes of a non-spinning neutron star and its tidal metric perturbation in general relativity, and determine the effect of relativistic corrections to the modes on mode coupling and the criterion for instability. Claims have been made that a new hydrodynamic instability can occur in a neutron star in a binary neutron star system triggered by the nonlinear coupling of the companions tidal field to pairs of p-modes and g-modes in it as the binary inspirals toward merger. This PG instability may be significant since it can influence the binarys inspiral phase by extracting orbital energy, thereby potentially causing large deviations in their gravitational waveforms from those predicted by theoretical models that do not account for it. This can result in incorrect parameter estimation, at best, or mergers going undetected, at worst, owing to the use of deficient waveform models. On the other hand, better modeling of this instability and its effect on binary orbits can unravel a new phenomenon and shed light on stellar instabilities, via gravitational wave observations. So far, all mode-tide coupling instability studies have been formulated in Newtonian perturbation theory. Neutron stars are compact objects, so relativistic corrections might be important. We present and test a new code to calculate the relativistic eigenmodes of nonrotating relativistic stars. We use these relativistic tide and neutron star eigenmodes to compute the mode-tide coupling strength (MTCS) for a few selected equations of state. The MTCS thus calculated can be at most tens of percent different from its purely Newtonian value, but we confirm the dependencies on orbital separation and equation of state found by Newtonian calculations. For some equations of state, the MTCS is very sensitive to the neutron star crust region, demonstrating the importance of treating this region accurately.
Recently exploratory studies were performed on the possibility of constraining the neutron star equation of state (EOS) using signals from coalescing binary neutron stars, or neutron star-black hole systems, as they will be seen in upcoming advanced gravitational wave detectors such as Advanced LIGO and Advanced Virgo. In particular, it was estimated to what extent the combined information from multiple detections would enable one to distinguish between different equations of state through hypothesis ranking or parameter estimation. Under the assumption of zero neutron star spins both in signals and in template waveforms and considering tidal effects to 1 post-Newtonian (1PN) order, it was found that O(20) sources would suffice to distinguish between a hard, moderate, and soft equation of state. Here we revisit these results, this time including neutron star tidal effects to the highest order currently known, termination of gravitational waveforms at the contact frequency, neutron star spins, and the resulting quadrupole-monopole interaction. We also take the masses of neutron stars in simulated sources to be distributed according to a relatively strongly peaked Gaussian, as hinted at by observations, but without assuming that the data analyst will necessarily have accurate knowledge of this distribution for use as a mass prior. We find that especially the effect of the latter is dramatic, necessitating many more detections to distinguish between different EOS and causing systematic biases in parameter estimation, on top of biases due to imperfect understanding of the signal model pointed out in earlier work. This would get mitigated if reliable prior information about the mass distribution could be folded into the analyses.
We have studied the dynamics of an equal-mass magnetized neutron-star binary within a resistive magnetohydrodynamic (RMHD) approach in which the highly conducting stellar interior is matched to an electrovacuum exterior. Because our analysis is aimed at assessing the modifications introduced by resistive effects on the dynamics of the binary after the merger and through to collapse, we have carried out a close comparison with an equivalent simulation performed within the traditional ideal magnetohydrodynamic approximation. We have found that there are many similarities between the two evolutions but also one important difference: the survival time of the hyper massive neutron star increases in a RMHD simulation. This difference is due to a less efficient magnetic-braking mechanism in the resistive regime, in which matter can move across magnetic-field lines, thus reducing the outward transport of angular momentum. Both the RMHD and the ideal magnetohydrodynamic simulations carried here have been performed at higher resolutions and with a different grid structure than those in previous work of ours [L. Rezzolla, B. Giacomazzo, L. Baiotti, J. Granot, C. Kouveliotou, and M. A. Aloy, Astrophys. J. Letters 732, L6 (2011)], but confirm the formation of a low-density funnel with an ordered magnetic field produced by the black hole--torus system. In both regimes the magnetic field is predominantly toroidal in the highly conducting torus and predominantly poloidal in the nearly evacuated funnel. Reconnection processes or neutrino annihilation occurring in the funnel, none of which we model, could potentially increase the internal energy in the funnel and launch a relativistic outflow, which, however, is not produced in these simulations.
We recently described an instability due to the nonlinear coupling of p-modes to g-modes and, as an application, we studied the stability of the tide in coalescing binary neutron stars. Although we found that the tide is p-g unstable early in the inspiral and rapidly drives modes to large energies, our analysis only accounted for three-mode interactions. Venumadhav, Zimmerman, and Hirata showed that four-mode interactions must also be accounted for as they enter into the analysis at the same order. They found a near-exact cancellation between three- and four-mode interactions and concluded that while the tide in binary neutron stars can be p-g unstable, the growth rates are not fast enough to impact the gravitational wave signal. Their analysis assumes that the linear tide is incompressible, which is true of the static linear tide (the m=0 harmonic) but not the non-static linear tide (m=+/- 2). Here we account for the compressibility of the non-static linear tide and find that the three- and four-mode interactions no longer cancel. As a result, we find that the instability can rapidly drive modes to significant energies (there is time for several dozen e-foldings of growth before the binary merges). We also show that linear damping interferes with the cancellation and may further enhance the p-g growth rates. The early onset of the instability (at gravitational wave frequencies near 50 Hz), the rapid growth rates, and the large number of unstable modes (> 10^3), suggest that the instability could impact the phase evolution of gravitational waves from binary neutron stars. Assessing its impact will require an understanding of how the instability saturates and is left to future work.
We consider the effect of a logarithmic f(R) theory, motivated by the form of the one-loop effective action arising from gluons in curved spacetime, on the structure of relativistic stars. In addition to analysing the consistency constraints on the potential of the scalar degree of freedom, we discuss the possibility of observational features arising from a fifth force in the vicinity of the neutron star surface. We find that the model exhibits a chameleon effect that completely suppresses the effect of the modification on scales exceeding a few radii, but close to the surface of the neutron star, the deviation from General Relativity can significantly affect the surface redshift that determines the shift in absorption (or emission) lines. We also use the method of perturbative constraints to solve the modified Tolman-Oppenheimer-Volkov equations for normal and self-bound neutron stars (quark stars).
We investigate the tidal deformability of a superfluid neutron star. We calculate the equilibrium structure in the general relativistic two-fluid formalism with entrainment effect where we take neutron superfluid as one fluid and the other fluid is comprised of protons and electrons, making it a charge neutral fluid. We use a relativistic mean field model for the equation of state of matter where the interaction between baryons is mediated by the exchange $sigma$, $omega$ and $rho$ mesons. Then, we study the linear, static $l=2$ perturbation on the star to compute the electric-type Love number following Hinderers prescription.