Do you want to publish a course? Click here

Modified gravity with logarithmic curvature corrections and the structure of relativistic stars

217   0   0.0 ( 0 )
 Added by Joel Weller
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider the effect of a logarithmic f(R) theory, motivated by the form of the one-loop effective action arising from gluons in curved spacetime, on the structure of relativistic stars. In addition to analysing the consistency constraints on the potential of the scalar degree of freedom, we discuss the possibility of observational features arising from a fifth force in the vicinity of the neutron star surface. We find that the model exhibits a chameleon effect that completely suppresses the effect of the modification on scales exceeding a few radii, but close to the surface of the neutron star, the deviation from General Relativity can significantly affect the surface redshift that determines the shift in absorption (or emission) lines. We also use the method of perturbative constraints to solve the modified Tolman-Oppenheimer-Volkov equations for normal and self-bound neutron stars (quark stars).



rate research

Read More

Effects from nonstandard corrections to Newtonian gravity, at large scale, can be investigated using the cosmological structure formation. In particular, it is possible to show if and how a logarithmic correction (as that induced from nonlocal gravity) modifies the clustering properties of galaxies and of clusters of galaxies. The thermodynamics of such systems can be used to obtain important information about the effects of such modification on clustering. We will compare its effects with observational data and it will be demonstrated that the observations seem to point to a characteristic scale where such a logarithmic correction might be in play at galactic scales. However, at larger scales such statistical inferences are much weaker, so that a fully reliable statistical evidence for this kind of corrections cannot be stated without further investigations and the use of more varied and precise cosmological and astrophysical probes.
The emergent area of gravitational wave astronomy promises to provide revolutionary discoveries in the areas of astrophysics, cosmology, and fundamental physics. One of the most exciting possibilities is to use gravitational-wave observations to test alternative theories of gravity. In this contribution we describe how to use observations of extreme-mass-ratio inspirals by the future Laser Interferometer Space Antenna to test a particular class of theories: Chern-Simons modified gravity.
It is shown that F(R)-modified gravitational theories lead to curvature oscillations in astrophysical systems with rising energy density. The frequency and the amplitude of such oscillations could be very high and would lead to noticeable production of energetic cosmic ray particles.
We obtain well behaved interior solutions describing hydrostatic equilibrium of anisotropic relativistic stars in scale-dependent gravity, where Newtons constant is allowed to vary with the radial coordinate throughout the star. Assuming i) a linear equation-of-state in the MIT bag model for quark matter, and ii) a certain profile for the energy density, we integrate numerically the generalized structure equations, and we compute the basic properties of the strange quark stars, such as mass, radius and compactness. Finally, we demonstrate that stability criteria as well as the energy conditions are fulfilled. Our results show that a decreasing Newtons constant throughout the objects leads to slightly more massive and more compact stars.
Static and spherically symmetric wormhole solutions can be reconstructed in the framework of curvature based Extended Theories of Gravity. In particular, extensions of the General Relativity, in metric and curvature formalism give rise to modified gravitational potentials, constituted by the classical Newtonian potential and Yukawa-like corrections, whose parameters can be, in turn, gauged by the observations. Such an approach allows to reconstruct the spacetime out of the wormhole throat considering the asymptotic flatness as a physical property for the related gravitational field. Such an argument can be applied for a large class of curvature theories characterising the wormholes through the parameters of the potentials. According to this procedure, possible wormhole solutions could be observationally constrained. On the other hand, stable and traversable wormholes could be a direct probe for this class of Extended Theories of Gravity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا