Do you want to publish a course? Click here

Shadowless rapidly rotating yet not ultraspinning Kerr-(Newman)-AdS$_4$ Black Hole

132   0   0.0 ( 0 )
 Added by Puxun Wu
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We show that the Kerr-(Newman)-AdS$_4$ black hole will be shadowless if its rotation parameter is larger than a critical value $a_c$ which is not necessarily equal to the AdS radius. This is because the null hypersurface caustics (NHC) appears both inside the Cauchy horizon and outside the event horizon for the black hole with the rotation parameter beyond the critical value, and the NHC outside the event horizon scatters diffusely the light reaching it. Our studies also further confirm that whether an ultraspinning black hole is super-entropic or not is unrelated to the existence of the NHC outside the event horizon.

rate research

Read More

This article explores the characteristics of ergoregion, horizons and circular geodesics around a Kerr-Newman-Kasuya black hole. We investigate the effect of spin and dyonic charge parameters on ergoregion, event horizon and static limit surface of the said black hole. We observed that both electric, as well as magnetic charge parameters, results in decreasing the radii of event horizon and static limit, whereas increasing the area of ergoregion. The obtained results are compared with that acquired from Kerr and Schwarzschild black holes. Moreover, we figured out the photons orbit of circular null geodesics and studied the angular velocity of a particle within ergoregion.
The Rastall gravity is the modified Einstein general relativity, in which the energy-momentum conservation law is generalized to $T^{mu u}_{~~;mu}=lambda R^{, u}$. In this work, we derive the Kerr-Newman-AdS (KN-AdS) black hole solutions surrounded by the perfect fluid matter in the Rastall gravity using the Newman-Janis method and Mathematica package. We then discuss the black hole properties surrounded by two kinds of specific perfect fluid matter, the dark energy ($omega=-2/3$) and the perfect fluid dark matter ($omega=-1/3$). Firstly, the Rastall parameter $kappalambda$ could be constrained by the weak energy condition and strong energy condition. Secondly, by analyzing the number of roots in the horizon equation, we get the range of the perfect fluid matter intensity $alpha$, which depends on the black hole mass $M$ and the Rastall parameter $kappalambda$. Thirdly, we study the influence of the perfect fluid dark matter and dark energy on the ergosphere. We find that the perfect fluid dark matter has significant effects on the ergosphere size, while the dark energy has smaller effects. Finally, we find that the perfect fluid matter does not change the singularity of the black hole. Furthermore, we investigate the rotation velocity in the equatorial plane for the KN-AdS black hole with dark energy and perfect fluid dark matter. We propose that the rotation curve diversity in Low Surface Brightness galaxies could be explained in the framework of the Rastall gravity when both the perfect fluid dark matter halo and the baryon disk are taken into account.
The superradiant instability of rotating black holes with negative cosmological constant is studied by numerically solving the full 3+1-dimensional Einstein equations. We find evidence for an epoch dominated by a solution with a single helical Killing vector and a multi-stage process with distinct superradiant instabilities.
We analyze rigidly rotating Nambu--Goto strings in the Kerr spacetime, particularly focusing on the strings sticking in the horizon. From the regularity on the horizon, we find the condition for sticking in the horizon, which is consistent with the second law of the black hole thermodynamics. Energy extraction through the sticking string from a Kerr black hole occurs. We obtain the maximum value of the luminosity of the energy extraction.
We present new analytic rotating AdS$_4$ black holes, found as solutions of 4d gauged $mathcal{N}=2$ supergravity coupled to abelian vector multiplets with a symmetric scalar manifold. These configurations preserve two real supercharges and have a smooth limit to the BPS Kerr-Newman-AdS$_4$ black hole. We spell out the solution of the $STU$ model admitting an uplift to M-theory on S$^7$. We identify an entropy function, which upon extremization gives the black hole entropy, to be holographically reproduced by the leading $N$ contribution of the generalized superconformal index of the dual theory.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا