No Arabic abstract
Remote photoplethysmography (rPPG) monitors heart rate without requiring physical contact, which allows for a wide variety of applications. Deep learning-based rPPG have demonstrated superior performance over the traditional approaches in controlled context. However, the lighting situation in indoor space is typically complex, with uneven light distribution and frequent variations in illumination. It lacks a fair comparison of different methods under different illuminations using the same dataset. In this paper, we present a public dataset, namely the BH-rPPG dataset, which contains data from twelve subjects under three illuminations: low, medium, and high illumination. We also provide the ground truth heart rate measured by an oximeter. We evaluate the performance of three deep learning-based methods to that of four traditional methods using two public datasets: the UBFC-rPPG dataset and the BH-rPPG dataset. The experimental results demonstrate that traditional methods are generally more resistant to fluctuating illuminations. We found that the rPPGNet achieves lowest MAE among deep learning-based method under medium illumination, whereas the CHROM achieves 1.5 beats per minute (BPM), outperforming the rPPGNet by 60%. These findings suggest that while developing deep learning-based heart rate estimation algorithms, illumination variation should be taken into account. This work serves as a benchmark for rPPG performance evaluation and it opens a pathway for future investigation into deep learning-based rPPG under illumination variations.
Continuous, ubiquitous monitoring through wearable sensors has the potential to collect useful information about users context. Heart rate is an important physiologic measure used in a wide variety of applications, such as fitness tracking and health monitoring. However, wearable sensors that monitor heart rate, such as smartwatches and electrocardiogram (ECG) patches, can have gaps in their data streams because of technical issues (e.g., bad wireless channels, battery depletion, etc.) or user-related reasons (e.g. motion artifacts, user compliance, etc.). The ability to use other available sensor data (e.g., smartphone data) to estimate missing heart rate readings is useful to cope with any such gaps, thus improving data quality and continuity. In this paper, we test the feasibility of estimating raw heart rate using smartphone sensor data. Using data generated by 12 participants in a one-week study period, we were able to build both personalized and generalized models using regression, SVM, and random forest algorithms. All three algorithms outperformed the baseline moving-average interpolation method for both personalized and generalized settings. Moreover, our findings suggest that personalized models outperformed the generalized models, which speaks to the importance of considering personal physiology, behavior, and life style in the estimation of heart rate. The promising results provide preliminary evidence of the feasibility of combining smartphone sensor data with wearable sensor data for continuous heart rate monitoring.
Heart beat rhythm and heart rate (HR) are important physiological parameters of the human body. This study presents an efficient multi-hierarchical spatio-temporal convolutional network that can quickly estimate remote physiological (rPPG) signal and HR from face video clips. First, the facial color distribution characteristics are extracted using a low-level face feature Generation (LFFG) module. Then, the three-dimensional (3D) spatio-temporal stack convolution module (STSC) and multi-hierarchical feature fusion module (MHFF) are used to strengthen the spatio-temporal correlation of multi-channel features. In the MHFF, sparse optical flow is used to capture the tiny motion information of faces between frames and generate a self-adaptive region of interest (ROI) skin mask. Finally, the signal prediction module (SP) is used to extract the estimated rPPG signal. The experimental results on the three datasets show that the proposed network outperforms the state-of-the-art methods.
Objective: To apply deep learning pose estimation algorithms for vision-based assessment of parkinsonism and levodopa-induced dyskinesia (LID). Methods: Nine participants with Parkinsons disease (PD) and LID completed a levodopa infusion protocol, where symptoms were assessed at regular intervals using the Unified Dyskinesia Rating Scale (UDysRS) and Unified Parkinsons Disease Rating Scale (UPDRS). A state-of-the-art deep learning pose estimation method was used to extract movement trajectories from videos of PD assessments. Features of the movement trajectories were used to detect and estimate the severity of parkinsonism and LID using random forest. Communication and drinking tasks were used to assess LID, while leg agility and toe tapping tasks were used to assess parkinsonism. Feature sets from tasks were also combined to predict total UDysRS and UPDRS Part III scores. Results: For LID, the communication task yielded the best results for dyskinesia (severity estimation: r = 0.661, detection: AUC = 0.930). For parkinsonism, leg agility had better results for severity estimation (r = 0.618), while toe tapping was better for detection (AUC = 0.773). UDysRS and UPDRS Part III scores were predicted with r = 0.741 and 0.530, respectively. Conclusion: This paper presents the first application of deep learning for vision-based assessment of parkinsonism and LID and demonstrates promising performance for the future translation of deep learning to PD clinical practices. Significance: The proposed system provides insight into the potential of computer vision and deep learning for clinical application in PD.
This study investigates the potential of deep learning methods to identify individuals with suspected COVID-19 infection using remotely collected heart-rate data. The study utilises data from the ongoing EU IMI RADAR-CNS research project that is investigating the feasibility of wearable devices and smart phones to monitor individuals with multiple sclerosis (MS), depression or epilepsy. Aspart of the project protocol, heart-rate data was collected from participants using a Fitbit wristband. The presence of COVID-19 in the cohort in this work was either confirmed through a positive swab test, or inferred through the self-reporting of a combination of symptoms including fever, respiratory symptoms, loss of smell or taste, tiredness and gastrointestinal symptoms. Experimental results indicate that our proposed contrastive convolutional auto-encoder (contrastive CAE), i. e., a combined architecture of an auto-encoder and contrastive loss, outperforms a conventional convolutional neural network (CNN), as well as a convolutional auto-encoder (CAE) without using contrastive loss. Our final contrastive CAE achieves 95.3% unweighted average recall, 86.4% precision, anF1 measure of 88.2%, a sensitivity of 100% and a specificity of 90.6% on a testset of 19 participants with MS who reported symptoms of COVID-19. Each of these participants was paired with a participant with MS with no COVID-19 symptoms.
The diagnosis of heart diseases is a difficult task generally addressed by an appropriate examination of patients clinical data. Recently, the use of heart rate variability (HRV) analysis as well as of some machine learning algorithms, has proved to be a valuable support in the diagnosis process. However, till now, ischemic heart disease (IHD) has been diagnosed on the basis of Artificial Neural Networks (ANN) applied only to signs, symptoms and sequential ECG and coronary angiography, an invasive tool, while could be probably identified in a non-invasive way by using parameters extracted from HRV, a signal easily obtained from the ECG. In this study, 18 non-invasive features (age, gender, left ventricular ejection fraction and 15 obtained from HRV) of 243 subjects (156 normal subjects and 87 IHD patients) were used to train and validate a series of several ANN, different for number of input and hidden nodes. The best result was obtained using 7 input parameters and 7 hidden nodes with an accuracy of 98.9% and 82% for the training and validation dataset, respectively.