Do you want to publish a course? Click here

Direct Detection of Light Dark Matter from Evaporating Primordial Black Holes

203   0   0.0 ( 0 )
 Added by Marco Chianese Dr
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The direct detection of sub-GeV dark matter interacting with nucleons is hampered by to the low recoil energies induced by scatterings in the detectors. This experimental difficulty is avoided in the scenario of boosted dark matter where a component of dark matter particles is endowed with large kinetic energies. In this Letter, we point out that the current evaporation of primordial black holes with masses from $10^{14}$ to $10^{16}$ g is a source of boosted light dark matter with energies of tens to hundreds of MeV. Focusing on the XENON1T experiment, we show that these relativistic dark matter particles could give rise to a signal orders of magnitude larger than the present upper bounds. Therefore, we are able to significantly constrain the combined parameter space of primordial black holes and sub-GeV dark matter. In the presence of primordial black holes with a mass of $10^{15}~mathrm{g}$ and an abundance compatible with present bounds, the limits on DM-nucleon cross-section are improved by four orders of magnitude.

rate research

Read More

100 - Isabella Masina 2021
The mechanism of the generation of dark matter and dark radiation from the evaporation of primordial black holes is very interesting. We consider the case of Kerr black holes to generalize previous results obtained in the Schwarzschild case. For dark matter, the results do not change dramatically and the bounds on warm dark matter apply similarly: in particular, the Kerr case cannot save the scenario of black hole domination for light dark matter. For dark radiation, the expectations for $Delta N_{eff}$ do not change significantly with respect to the Schwarzschild case, but for an enhancement in the case of spin 2 particles: in the massless case, however, the projected experimental sensitivity would be reached only for extremal black holes.
Primordial black holes (PBHs) hypothetically generated in the first instants of life of the Universe are potential dark matter (DM) candidates. Focusing on PBHs masses in the range $[5 times10^{14} - 5 times 10^{15}]$g, we point out that the neutrinos emitted by PBHs evaporation can interact through the coherent elastic neutrino nucleus scattering (CE$ u$NS) producing an observable signal in multi-ton DM direct detection experiments. We show that with the high exposures envisaged for the next-generation facilities, it will be possible to set bounds on the fraction of DM composed by PBHs improving the existing neutrino limits obtained with Super-Kamiokande. We also quantify to what extent a signal originating from a small fraction of DM in the form of PBHs would modify the so-called neutrino floor, the well-known barrier towards detection of weakly interacting massive particles (WIMPs) as the dominant DM component.
We investigate the effects of producing dark matter by Hawking evaporation of primordial black holes (PBHs) in scenarios that may have a second well-motivated dark matter production mechanism, such as freeze-out, freeze-in, or gravitational production. We show that the interplay between PBHs and the alternative sources of dark matter can give rise to model-independent modifications to the required dark matter abundance from each production mechanism, which in turn affect the prospects for dark matter detection. In particular, we demonstrate that for the freeze-out mechanism, accounting for evaporation of PBHs after freeze-out demands a larger annihilation cross section of dark matter particles than its canonical value for a thermal dark matter. For mechanisms lacking thermalization due to a feeble coupling to the thermal bath, we show that the PBH contribution to the dark matter abundance leads to the requirement of an even feebler coupling. Moreover, we show that when a large initial abundance of PBHs causes an early matter-dominated epoch, PBH evaporation alone cannot explain the whole abundance of dark matter today. In this case, an additional production mechanism is required, in contrast to the case when PBHs are formed and evaporate during a radiation-dominated epoch.
109 - James B. Dent 2015
Beginning with a set of simplified models for spin-0, spin-$half$, and spin-1 dark matter candidates using completely general Lorentz invariant and renormalizable Lagrangians, we derive the full set of non-relativistic operators and nuclear matrix elements relevant for direct detection of dark matter, and use these to calculate rates and recoil spectra for scattering on various target nuclei. This allows us to explore what high energy physics constraints might be obtainable from direct detection experiments, what degeneracies exist, which operators are ubiquitous and which are unlikely or sub-dominant. We find that there are operators which are common to all spins as well operators which are unique to spin-$half$ and spin-1 and elucidate two new operators which have not been previously considered. In addition we demonstrate how recoil energy spectra can distinguish fundamental microphysics if multiple target nuclei are used. Our work provides a complete roadmap for taking generic fundamental dark matter theories and calculating rates in direct detection experiments. This provides a useful guide for experimentalists designing experiments and theorists developing new dark matter models.
Primordial black holes (PBHs) are a potential dark matter candidate whose masses can span over many orders of magnitude. If they have masses in the $10^{15}-10^{17}$ g range, they can emit sizeable fluxes of MeV neutrinos through evaporation via Hawking radiation. We explore the possibility of detecting light (non-)rotating PBHs with future neutrino experiments. We focus on two next generation facilities: the Deep Underground Neutrino Experiment (DUNE) and THEIA. We simulate the expected event spectra at both experiments assuming different PBH mass distributions and spins, and we extract the expected 95% C.L. sensitivities to these scenarios. Our analysis shows that future neutrino experiments like DUNE and THEIA will be able to set competitive constraints on PBH dark matter, thus providing complementary probes in a part of the PBH parameter space currently constrained mainly by photon data.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا