No Arabic abstract
Primordial black holes (PBHs) are a potential dark matter candidate whose masses can span over many orders of magnitude. If they have masses in the $10^{15}-10^{17}$ g range, they can emit sizeable fluxes of MeV neutrinos through evaporation via Hawking radiation. We explore the possibility of detecting light (non-)rotating PBHs with future neutrino experiments. We focus on two next generation facilities: the Deep Underground Neutrino Experiment (DUNE) and THEIA. We simulate the expected event spectra at both experiments assuming different PBH mass distributions and spins, and we extract the expected 95% C.L. sensitivities to these scenarios. Our analysis shows that future neutrino experiments like DUNE and THEIA will be able to set competitive constraints on PBH dark matter, thus providing complementary probes in a part of the PBH parameter space currently constrained mainly by photon data.
Primordial black holes (PBHs) hypothetically generated in the first instants of life of the Universe are potential dark matter (DM) candidates. Focusing on PBHs masses in the range $[5 times10^{14} - 5 times 10^{15}]$g, we point out that the neutrinos emitted by PBHs evaporation can interact through the coherent elastic neutrino nucleus scattering (CE$ u$NS) producing an observable signal in multi-ton DM direct detection experiments. We show that with the high exposures envisaged for the next-generation facilities, it will be possible to set bounds on the fraction of DM composed by PBHs improving the existing neutrino limits obtained with Super-Kamiokande. We also quantify to what extent a signal originating from a small fraction of DM in the form of PBHs would modify the so-called neutrino floor, the well-known barrier towards detection of weakly interacting massive particles (WIMPs) as the dominant DM component.
The direct detection of sub-GeV dark matter interacting with nucleons is hampered by to the low recoil energies induced by scatterings in the detectors. This experimental difficulty is avoided in the scenario of boosted dark matter where a component of dark matter particles is endowed with large kinetic energies. In this Letter, we point out that the current evaporation of primordial black holes with masses from $10^{14}$ to $10^{16}$ g is a source of boosted light dark matter with energies of tens to hundreds of MeV. Focusing on the XENON1T experiment, we show that these relativistic dark matter particles could give rise to a signal orders of magnitude larger than the present upper bounds. Therefore, we are able to significantly constrain the combined parameter space of primordial black holes and sub-GeV dark matter. In the presence of primordial black holes with a mass of $10^{15}~mathrm{g}$ and an abundance compatible with present bounds, the limits on DM-nucleon cross-section are improved by four orders of magnitude.
We derive spectral lineshapes of the expected signal for a haloscope experiment searching for axionlike dark matter. The knowledge of these lineshapes is needed to optimize the experimental design and data analysis procedure. We extend the previously known results for the axion-photon and axion-gluon couplings to the case of gradient (axion-fermion) coupling. A unique feature of the gradient interaction is its dependence not only on magnitudes but also on directions of velocities of galactic halo particles, which leads to directional sensitivity of the corresponding haloscope. We also discuss the daily and annual modulations of the gradient signal caused by the Earths rotational and orbital motions. In the case of detection, these periodic modulations will be an important confirmation that the signal is sourced by axionlike particles in the halo of our galaxy.
Boosted dark matter (BDM) is a well-motivated class of dark matter (DM) candidates in which a small component of DM is relativistic at the present time. We lay the foundation for BDM searches via hadronic interactions in large liquid-argon time-projection chambers (LArTPCs), such as DUNE. We investigate BDM-nucleus scattering in detail by developing new event generation techniques with a parameterized detector simulation. We study the discovery potential in a DUNE-like experiment using the low threshold and directionality of hadron detection in LArTPCs and compare with other experiments.
We investigate the effects of producing dark matter by Hawking evaporation of primordial black holes (PBHs) in scenarios that may have a second well-motivated dark matter production mechanism, such as freeze-out, freeze-in, or gravitational production. We show that the interplay between PBHs and the alternative sources of dark matter can give rise to model-independent modifications to the required dark matter abundance from each production mechanism, which in turn affect the prospects for dark matter detection. In particular, we demonstrate that for the freeze-out mechanism, accounting for evaporation of PBHs after freeze-out demands a larger annihilation cross section of dark matter particles than its canonical value for a thermal dark matter. For mechanisms lacking thermalization due to a feeble coupling to the thermal bath, we show that the PBH contribution to the dark matter abundance leads to the requirement of an even feebler coupling. Moreover, we show that when a large initial abundance of PBHs causes an early matter-dominated epoch, PBH evaporation alone cannot explain the whole abundance of dark matter today. In this case, an additional production mechanism is required, in contrast to the case when PBHs are formed and evaporate during a radiation-dominated epoch.