Do you want to publish a course? Click here

End-to-End Spectro-Temporal Graph Attention Networks for Speaker Verification Anti-Spoofing and Speech Deepfake Detection

169   0   0.0 ( 0 )
 Added by Hemlata Tak
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Artefacts that serve to distinguish bona fide speech from spoofed or deepfake speech are known to reside in specific subbands and temporal segments. Various approaches can be used to capture and model such artefacts, however, none works well across a spectrum of diverse spoofing attacks. Reliable detection then often depends upon the fusion of multiple detection systems, each tuned to detect different forms of attack. In this paper we show that better performance can be achieved when the fusion is performed within the model itself and when the representation is learned automatically from raw waveform inputs. The principal contribution is a spectro-temporal graph attention network (GAT) which learns the relationship between cues spanning different sub-bands and temporal intervals. Using a model-level graph fusion of spectral (S) and temporal (T) sub-graphs and a graph pooling strategy to improve discrimination, the proposed RawGAT-ST model achieves an equal error rate of 1.06 % for the ASVspoof 2019 logical access database. This is one of the best results reported to date and is reproducible using an open source implementation.



rate research

Read More

In this paper, we present a conditional multitask learning method for end-to-end neural speaker diarization (EEND). The EEND system has shown promising performance compared with traditional clustering-based methods, especially in the case of overlapping speech. In this paper, to further improve the performance of the EEND system, we propose a novel multitask learning framework that solves speaker diarization and a desired subtask while explicitly considering the task dependency. We optimize speaker diarization conditioned on speech activity and overlap detection that are subtasks of speaker diarization, based on the probabilistic chain rule. Experimental results show that our proposed method can leverage a subtask to effectively model speaker diarization, and outperforms conventional EEND systems in terms of diarization error rate.
Voice activity detection (VAD) is an essential pre-processing step for tasks such as automatic speech recognition (ASR) and speaker recognition. A basic goal is to remove silent segments within an audio, while a more general VAD system could remove all the irrelevant segments such as noise and even unwanted speech from non-target speakers. We define the task, which only detects the speech from the target speaker, as speaker-dependent voice activity detection (SDVAD). This task is quite common in real applications and usually implemented by performing speaker verification (SV) on audio segments extracted from VAD. In this paper, we propose an end-to-end neural network based approach to address this problem, which explicitly takes the speaker identity into the modeling process. Moreover, inference can be performed in an online fashion, which leads to low system latency. Experiments are carried out on a conversational telephone dataset generated from the Switchboard corpus. Results show that our proposed online approach achieves significantly better performance than the usual VAD/SV system in terms of both frame accuracy and F-score. We also used our previously proposed segment-level metric for a more comprehensive analysis.
Spoofing countermeasures aim to protect automatic speaker verification systems from attempts to manipulate their reliability with the use of spoofed speech signals. While results from the most recent ASVspoof 2019 evaluation show great potential to detect most forms of attack, some continue to evade detection. This paper reports the first application of RawNet2 to anti-spoofing. RawNet2 ingests raw audio and has potential to learn cues that are not detectable using more traditional countermeasure solutions. We describe modifications made to the original RawNet2 architecture so that it can be applied to anti-spoofing. For A17 attacks, our RawNet2 systems results are the second-best reported, while the fusion of RawNet2 and baseline countermeasures gives the second-best results reported for the full ASVspoof 2019 logical access condition. Our results are reproducible with open source software.
The cues needed to detect spoofing attacks against automatic speaker verification are often located in specific spectral sub-bands or temporal segments. Previous works show the potential to learn these using either spectral or temporal self-attention mechanisms but not the relationships between neighbouring sub-bands or segments. This paper reports our use of graph attention networks (GATs) to model these relationships and to improve spoofing detection performance. GATs leverage a self-attention mechanism over graph structured data to model the data manifold and the relationships between nodes. Our graph is constructed from representations produced by a ResNet. Nodes in the graph represent information either in specific sub-bands or temporal segments. Experiments performed on the ASVspoof 2019 logical access database show that our GAT-based model with temporal attention outperforms all of our baseline single systems. Furthermore, GAT-based systems are complementary to a set of existing systems. The fusion of GAT-based models with more conventional countermeasures delivers a 47% relative improvement in performance compared to the best performing single GAT system.
This work presents a novel back-end framework for speaker verification using graph attention networks. Segment-wise speaker embeddings extracted from multiple crops within an utterance are interpreted as node representations of a graph. The proposed framework inputs segment-wise speaker embeddings from an enrollment and a test utterance and directly outputs a similarity score. We first construct a graph using segment-wise speaker embeddings and then input these to graph attention networks. After a few graph attention layers with residual connections, each node is projected into a one-dimensional space using affine transform, followed by a readout operation resulting in a scalar similarity score. To enable successful adaptation for speaker verification, we propose techniques such as separating trainable weights for attention map calculations between segment-wise speaker embeddings from different utterances. The effectiveness of the proposed framework is validated using three different speaker embedding extractors trained with different architectures and objective functions. Experimental results demonstrate consistent improvement over various baseline back-end classifiers, with an average equal error rate improvement of 20% over the cosine similarity back-end without test time augmentation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا