Do you want to publish a course? Click here

End-to-End Speaker Diarization Conditioned on Speech Activity and Overlap Detection

105   0   0.0 ( 0 )
 Added by Yuki Takashima
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

In this paper, we present a conditional multitask learning method for end-to-end neural speaker diarization (EEND). The EEND system has shown promising performance compared with traditional clustering-based methods, especially in the case of overlapping speech. In this paper, to further improve the performance of the EEND system, we propose a novel multitask learning framework that solves speaker diarization and a desired subtask while explicitly considering the task dependency. We optimize speaker diarization conditioned on speech activity and overlap detection that are subtasks of speaker diarization, based on the probabilistic chain rule. Experimental results show that our proposed method can leverage a subtask to effectively model speaker diarization, and outperforms conventional EEND systems in terms of diarization error rate.



rate research

Read More

Voice activity detection (VAD) is an essential pre-processing step for tasks such as automatic speech recognition (ASR) and speaker recognition. A basic goal is to remove silent segments within an audio, while a more general VAD system could remove all the irrelevant segments such as noise and even unwanted speech from non-target speakers. We define the task, which only detects the speech from the target speaker, as speaker-dependent voice activity detection (SDVAD). This task is quite common in real applications and usually implemented by performing speaker verification (SV) on audio segments extracted from VAD. In this paper, we propose an end-to-end neural network based approach to address this problem, which explicitly takes the speaker identity into the modeling process. Moreover, inference can be performed in an online fashion, which leads to low system latency. Experiments are carried out on a conversational telephone dataset generated from the Switchboard corpus. Results show that our proposed online approach achieves significantly better performance than the usual VAD/SV system in terms of both frame accuracy and F-score. We also used our previously proposed segment-level metric for a more comprehensive analysis.
Artefacts that serve to distinguish bona fide speech from spoofed or deepfake speech are known to reside in specific subbands and temporal segments. Various approaches can be used to capture and model such artefacts, however, none works well across a spectrum of diverse spoofing attacks. Reliable detection then often depends upon the fusion of multiple detection systems, each tuned to detect different forms of attack. In this paper we show that better performance can be achieved when the fusion is performed within the model itself and when the representation is learned automatically from raw waveform inputs. The principal contribution is a spectro-temporal graph attention network (GAT) which learns the relationship between cues spanning different sub-bands and temporal intervals. Using a model-level graph fusion of spectral (S) and temporal (T) sub-graphs and a graph pooling strategy to improve discrimination, the proposed RawGAT-ST model achieves an equal error rate of 1.06 % for the ASVspoof 2019 logical access database. This is one of the best results reported to date and is reproducible using an open source implementation.
This paper investigates an end-to-end neural diarization (EEND) method for an unknown number of speakers. In contrast to the conventional pipeline approach to speaker diarization, EEND methods are better in terms of speaker overlap handling. However, EEND still has a disadvantage in that it cannot deal with a flexible number of speakers. To remedy this problem, we introduce encoder-decoder-based attractor calculation module (EDA) to EEND. Once frame-wise embeddings are obtained, EDA sequentially generates speaker-wise attractors on the basis of a sequence-to-sequence method using an LSTM encoder-decoder. The attractor generation continues until a stopping condition is satisfied; thus, the number of attractors can be flexible. Diarization results are then estimated as dot products of the attractors and embeddings. The embeddings from speaker overlaps result in larger dot product values with multiple attractors; thus, this method can deal with speaker overlaps. Because the maximum number of output speakers is still limited by the training set, we also propose an iterative inference method to remove this restriction. Further, we propose a method that aligns the estimated diarization results with the results of an external speech activity detector, which enables fair comparison against pipeline approaches. Extensive evaluations on simulated and real datasets show that EEND-EDA outperforms the conventional pipeline approach.
We describe Parrotron, an end-to-end-trained speech-to-speech conversion model that maps an input spectrogram directly to another spectrogram, without utilizing any intermediate discrete representation. The network is composed of an encoder, spectrogram and phoneme decoders, followed by a vocoder to synthesize a time-domain waveform. We demonstrate that this model can be trained to normalize speech from any speaker regardless of accent, prosody, and background noise, into the voice of a single canonical target speaker with a fixed accent and consistent articulation and prosody. We further show that this normalization model can be adapted to normalize highly atypical speech from a deaf speaker, resulting in significant improvements in intelligibility and naturalness, measured via a speech recognizer and listening tests. Finally, demonstrating the utility of this model on other speech tasks, we show that the same model architecture can be trained to perform a speech separation task
Silent speech interfaces (SSI) has been an exciting area of recent interest. In this paper, we present a non-invasive silent speech interface that uses inaudible acoustic signals to capture peoples lip movements when they speak. We exploit the speaker and microphone of the smartphone to emit signals and listen to their reflections, respectively. The extracted phase features of these reflections are fed into the deep learning networks to recognize speech. And we also propose an end-to-end recognition framework, which combines the CNN and attention-based encoder-decoder network. Evaluation results on a limited vocabulary (54 sentences) yield word error rates of 8.4% in speaker-independent and environment-independent settings, and 8.1% for unseen sentence testing.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا