No Arabic abstract
Elucidating photochemical reactions is vital to understand various biochemical phenomena and develop functional materials such as artificial photosynthesis and organic solar cells, albeit its notorious difficulty by both experiments and theories. The best theoretical way so far to analyze photochemical reactions at the level of ab initio electronic structure is the state-averaged multi-configurational self-consistent field (SA-MCSCF) method. However, the exponential computational cost of classical computers with the increasing number of molecular orbitals hinders applications of SA-MCSCF for large systems we are interested in. Utilizing quantum computers was recently proposed as a promising approach to overcome such computational cost, dubbed as SA orbital-optimized variational quantum eigensolver (SA-OO-VQE). Here we extend a theory of SA-OO-VQE so that analytical gradients of energy can be evaluated by standard techniques that are feasible with near-term quantum computers. The analytical gradients, known only for the state-specific OO-VQE in previous studies, allow us to determine various characteristics of photochemical reactions such as the minimal energy (ME) points and the conical intersection (CI) points. We perform a proof-of-principle calculation of our methods by applying it to the photochemical {it cis-trans} isomerization of 1,3,3,3-tetrafluoropropene. Numerical simulations of quantum circuits and measurements can correctly capture the photochemical reaction pathway of this model system, including the ME and CI points. Our results illustrate the possibility of leveraging quantum computers for studying photochemical reactions.
An adaptive variational quantum imaginary time evolution (AVQITE) approach is introduced that yields efficient representations of ground states for interacting Hamiltonians on near-term quantum computers. It is based on McLachlans variational principle applied to imaginary time evolution of variational wave functions. The variational parameters evolve deterministically according to equations of motions that minimize the difference to the exact imaginary time evolution, which is quantified by the McLachlan distance. Rather than working with a fixed variational ansatz, where the McLachlan distance is constrained by the quality of the ansatz, the AVQITE method iteratively expands the ansatz along the dynamical path to keep the McLachlan distance below a chosen threshold. This ensures the state is able to follow the quantum imaginary time evolution path in the system Hilbert space rather than in a restricted variational manifold set by a predefined fixed ansatz. AVQITE is used to prepare ground states of H$_4$, H$_2$O and BeH$_2$ molecules, where it yields compact variational ansatze and ground state energies within chemical accuracy. Polynomial scaling of circuit depth with system size is demonstrated through a set of AVQITE calculations of quantum spin models. Finally, it is shown that quantum Lanczos calculations can also be naturally performed alongside AVQITE without additional quantum resource costs.
We present a generalization of the variational principle that is compatible with any Hamiltonian eigenstate that can be specified uniquely by a list of properties. This variational principle appears to be compatible with a wide range of electronic structure methods, including mean-field theory, density functional theory, multi-reference theory, and quantum Monte Carlo. Like the standard variational principle, this generalized variational principle amounts to the optimization of a nonlinear function that, in the limit of an arbitrarily flexible wave function, has the desired Hamiltonian eigenstate as its global minimum. Unlike the standard variational principle, it can target excited states and select individual states in cases of degeneracy or near-degeneracy. As an initial demonstration of how this approach can be useful in practice, we employ it to improve the optimization efficiency of excited state mean field theory by an order of magnitude. With this improved optimization, we are able to demonstrate that the accuracy of the corresponding second-order perturbation theory rivals that of singles-and-doubles equation-of-motion coupled cluster in a substantially broader set of molecules than could be explored by our previous optimization methodology.
Variational quantum eigensolver (VQE) optimizes parameterized eigenstates of a Hamiltonian on a quantum processor by updating parameters with a classical computer. Such a hybrid quantum-classical optimization serves as a practical way to leverage up classical algorithms to exploit the power of near-term quantum computing. Here, we develop a hybrid algorithm for VQE, emphasizing the classical side, that can solve a group of related Hamiltonians simultaneously. The algorithm incorporates a snake algorithm into many VQE tasks to collectively optimize variational parameters of different Hamiltonians. Such so-called collective VQEs~(cVQEs) is applied for solving molecules with varied bond length, which is a standard problem in quantum chemistry. Numeral simulations show that cVQE is not only more efficient in convergence, but also trends to avoid single VQE task to be trapped in local minimums. The collective optimization utilizes intrinsic relations between related tasks and may inspire advanced hybrid quantum-classical algorithms for solving practical problems.
We explore an alternative to twist averaging in order to obtain more cost-effective and accurate extrapolations to the thermodynamic limit (TDL) for coupled cluster doubles (CCD) calculations. We seek a single twist angle to perform calculations at, instead of integrating over many random points or a grid. We introduce the concept of connectivity, a quantity derived from the non-zero four-index integrals in an MP2 calculation. This allows us to find a special twist angle that provides appropriate connectivity in the energy equation, and which yields results comparable to full twist averaging. This special twist angle effectively makes the finite electron number CCD calculation represent the TDL more accurately, reducing the cost of twist-averaged CCD over $N_mathrm{s}$ twist angles from $N_s$ CCD calculations to $N_s$ MP2 calculations plus one CCD calculation.
By design, the variational quantum eigensolver (VQE) strives to recover the lowest-energy eigenvalue of a given Hamiltonian by preparing quantum states guided by the variational principle. In practice, the prepared quantum state is indirectly assessed by the value of the associated energy. Novel adaptive derivative-assembled pseudo-trotter (ADAPT) ansatz approaches and recent formal advances now establish a clear connection between the theory of quantum chemistry and the quantum state ansatz used to solve the electronic structure problem. Here we benchmark the accuracy of VQE and ADAPT-VQE to calculate the electronic ground states and potential energy curves for a few selected diatomic molecules, namely H$_2$, NaH, and KH. Using numerical simulation, we find both methods provide good estimates of the energy and ground state, but only ADAPT-VQE proves to be robust to particularities in optimization methods. Another relevant finding is that gradient-based optimization is overall more economical and delivers superior performance than analogous simulations carried out with gradient-free optimizers. The results also identify small errors in the prepared state fidelity which show an increasing trend with molecular size.