No Arabic abstract
An adaptive variational quantum imaginary time evolution (AVQITE) approach is introduced that yields efficient representations of ground states for interacting Hamiltonians on near-term quantum computers. It is based on McLachlans variational principle applied to imaginary time evolution of variational wave functions. The variational parameters evolve deterministically according to equations of motions that minimize the difference to the exact imaginary time evolution, which is quantified by the McLachlan distance. Rather than working with a fixed variational ansatz, where the McLachlan distance is constrained by the quality of the ansatz, the AVQITE method iteratively expands the ansatz along the dynamical path to keep the McLachlan distance below a chosen threshold. This ensures the state is able to follow the quantum imaginary time evolution path in the system Hilbert space rather than in a restricted variational manifold set by a predefined fixed ansatz. AVQITE is used to prepare ground states of H$_4$, H$_2$O and BeH$_2$ molecules, where it yields compact variational ansatze and ground state energies within chemical accuracy. Polynomial scaling of circuit depth with system size is demonstrated through a set of AVQITE calculations of quantum spin models. Finally, it is shown that quantum Lanczos calculations can also be naturally performed alongside AVQITE without additional quantum resource costs.
We develop a resource efficient step-merged quantum imaginary time evolution approach (smQITE) to solve for the ground state of a Hamiltonian on quantum computers. This heuristic method features a fixed shallow quantum circuit depth along the state evolution path. We use this algorithm to determine binding energy curves of a set of molecules, including H$_2$, H$_4$, H$_6$, LiH, HF, H$_2$O and BeH$_2$, and find highly accurate results. The required quantum resources of smQITE calculations can be further reduced by adopting the circuit form of the variational quantum eigensolver (VQE) technique, such as the unitary coupled cluster ansatz. We demonstrate that smQITE achieves a similar computational accuracy as VQE at the same fixed-circuit ansatz, without requiring a generally complicated high-dimensional non-convex optimization. Finally, smQITE calculations are carried out on Rigetti quantum processing units (QPUs), demonstrating that the approach is readily applicable on current noisy intermediate-scale quantum (NISQ) devices.
The road to computing on quantum devices has been accelerated by the promises that come from using Shors algorithm to reduce the complexity of prime factorization. However, this promise hast not yet been realized due to noisy qubits and lack of robust error correction schemes. Here we explore a promising, alternative method for prime factorization that uses well-established techniques from variational imaginary time evolution. We create a Hamiltonian whose ground state encodes the solution to the problem and use variational techniques to evolve a state iteratively towards these prime factors. We show that the number of circuits evaluated in each iteration scales as O(n^{5}d), where n is the bit-length of the number to be factorized and $d$ is the depth of the circuit. We use a single layer of entangling gates to factorize several numbers represented using 7, 8, and 9-qubit Hamiltonians. We also verify the methods performance by implementing it on the IBMQ Lima hardware.
Imaginary time evolution is a powerful tool for studying quantum systems. While it is possible to simulate with a classical computer, the time and memory requirements generally scale exponentially with the system size. Conversely, quantum computers can efficiently simulate quantum systems, but not non-unitary imaginary time evolution. We propose a variational algorithm for simulating imaginary time evolution on a hybrid quantum computer. We use this algorithm to find the ground-state energy of many-particle systems; specifically molecular hydrogen and lithium hydride, finding the ground state with high probability. Our method can also be applied to general optimisation problems and quantum machine learning. As our algorithm is hybrid, suitable for error mitigation and can exploit shallow quantum circuits, it can be implemented with current quantum computers.
The Hamiltonian operator plays a central role in quantum theory being a generator of unitary quantum dynamics. Its expectation value describes the energy of a quantum system. Typically being a non-unitary operator, the action of the Hamiltonian is either encoded using complex ancilla-based circuits, or implemented effectively as a sum of Pauli string terms. Here, we show how to approximate the Hamiltonian operator as a sum of propagators using a differential representation. The proposed approach, named Hamiltonian operator approximation (HOA), is designed to benefit analog quantum simulators, where one has direct access to simulation of quantum dynamics, but measuring separate circuits is not possible. We describe how to use this strategy in the hybrid quantum-classical workflow for performing energy measurements. Benchmarking the measurement scheme, we discuss the relevance of the discretization step size, stencil order, number of shots, and noise. We also use HOA to prepare ground states of complex material science models with direct iteration and quantum filter diagonalization, finding the lowest energy for the 12-qubit Hamiltonian of hydrogen chain H$_6$ with $10^{-5}$ Hartree precision using $11$ time-evolved reference states. The approach is compared to the variational quantum eigensolver, proving HOA beneficial for systems at increasing size corresponding to noisy large scale quantum devices. We find that for Heisenberg model with twelve or more spins our approach may outperform variational methods, both in terms of the gate depth and the total number of measurements.
Elucidating photochemical reactions is vital to understand various biochemical phenomena and develop functional materials such as artificial photosynthesis and organic solar cells, albeit its notorious difficulty by both experiments and theories. The best theoretical way so far to analyze photochemical reactions at the level of ab initio electronic structure is the state-averaged multi-configurational self-consistent field (SA-MCSCF) method. However, the exponential computational cost of classical computers with the increasing number of molecular orbitals hinders applications of SA-MCSCF for large systems we are interested in. Utilizing quantum computers was recently proposed as a promising approach to overcome such computational cost, dubbed as SA orbital-optimized variational quantum eigensolver (SA-OO-VQE). Here we extend a theory of SA-OO-VQE so that analytical gradients of energy can be evaluated by standard techniques that are feasible with near-term quantum computers. The analytical gradients, known only for the state-specific OO-VQE in previous studies, allow us to determine various characteristics of photochemical reactions such as the minimal energy (ME) points and the conical intersection (CI) points. We perform a proof-of-principle calculation of our methods by applying it to the photochemical {it cis-trans} isomerization of 1,3,3,3-tetrafluoropropene. Numerical simulations of quantum circuits and measurements can correctly capture the photochemical reaction pathway of this model system, including the ME and CI points. Our results illustrate the possibility of leveraging quantum computers for studying photochemical reactions.