Do you want to publish a course? Click here

Low-Complexity Improved-Throughput Generalised Spatial Modulation: Bit-to-Symbol Mapping, Detection and Performance Analysis

91   0   0.0 ( 0 )
 Added by Jiancheng An
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Low-complexity improved-throughput generalised spatial modulation (LCIT-GSM) is proposed. More explicitly, in GSM, extra information bits are conveyed implicitly by activating a fixed number $N_{a}$ out of $N_{t}$ transmit antennas (TAs) at a time. As a result, GSM has the advantage of a reduced number of radio-frequency (RF) chains and reduced inter-antenna interference (IAI) at the cost of a lower throughput than its multiplexing-oriented full-RF based counterparts. Variable-${N_a}$ GSM mitigates this throughput reduction by incorporating all possible TA activation patterns associated with a variable value $N_{a}$ ranging from $1$ to $N_{t}$ during a single channel-use, which maximises the throughput of GSM but suffers a high complexity of the mapping book design and demodulation. In order to mitigate the complexity, emph{first of all}, we propose two efficient schemes for mapping the information bits to the TA activation patterns, which can be readily scaled to massive MIMO setups. emph{Secondly}, in the absence of IAI, we derive a pair of low-complexity near-optimal detectors, one of them has a reduced search scope, while the other benefits from a decoupled single-stream based signal detection algorithm. emph{Finally}, the performance of the proposed LCIT-GSM system is characterised by the error probability upper bound (UB). Our Monte Carlo based simulation results confirm the improved error performance of our proposed scheme, despite its reduced signal detection complexity.



rate research

Read More

Recent considerations for reconfigurable intelligent surfaces (RISs) assume that RISs can convey information by reflection without the need of transmit radio frequency chains, which, however, is a challenging task. In this paper, we propose an RIS-enhanced multiple-input single-output system with reflection pattern modulation, where the RIS can configure its reflection state for boosting the received signal power via passive beamforming and simultaneously conveying its own information via reflection. We formulate an optimization problem to maximize the average received signal power by jointly optimizing the active beamforming at the access point (AP) and passive beamforming at the RIS for the case where the RISs state information is statistically known by the AP, and propose a high-quality suboptimal solution based on the alternating optimization technique. We analyze the asymptotic outage probability of the proposed scheme under Rayleigh fading channels, for which a closed-form expression is derived. The achievable rate of the proposed scheme is also investigated for the case where the transmitted symbol is drawn from a finite constellation. Simulation results validate the effectiveness of the proposed scheme and reveal the effect of various system parameters on the achievable rate performance. It is shown that the proposed scheme outperforms the conventional RIS-assisted system without information transfer in terms of achievable rate performance.
This paper proposed a low-complexity antenna layout-aware (ALA) covariance matrix estimation method. In the estimation process, antenna layout is assumed known at the estimator. Using this information, the estimator finds antenna pairs with statistically equivalent covariance values and sets their covariance values to the average of covariance values of all these antenna pairs. ALA for both uniform linear array (ULA) and uniform planar array (UPA) is discussed. This method takes the benefit that covariance matrices do not have full degrees of freedom. Then, the proposed ALA covariance matrix method is applied to a multi-cell network. Simulations have demonstrated that the proposed method can provide better performance than the widely used viaQ method, with respect to mean square errors and downlink spectral efficiencies.
103 - Yihuan Liao , Min Qiu , 2021
Delayed bit-interleaved coded modulation (DBICM) generalizes bit-interleaved coded modulation (BICM) by modulating differently delayed sub-blocks of codewords onto the same signals. DBICM improves transmission reliability over BICM due to its capability of detecting undelayed sub-blocks with the extrinsic information of the decoded delayed sub-blocks. In this work, we propose a novel windowed decoding algorithm for DBICM, which uses the extrinsic information of both the decoded delayed and undelayed sub-blocks, to improve the detection on all sub-blocks. Numerical results show that the proposed windowed decoding significantly outperforms the original decoding.
320 - Feng Shu , Lin Liu , LiLi Yang 2021
As a green and secure wireless transmission method, secure spatial modulation (SM) is becoming a hot research area. Its basic idea is to exploit both the index of activated transmit antenna and amplitude phase modulation signal to carry messages, improve security, and save energy. In this paper, we review its crucial challenges: transmit antenna selection (TAS), artificial noise (AN) projection, power allocation (PA) and joint detection at the desired receiver. As the size of signal constellation tends to medium-scale or large-scale, the complexity of traditional maximum likelihood detector becomes prohibitive. To reduce this complexity, a low-complexity maximum likelihood (ML) detector is proposed. To further enhance the secrecy rate (SR) performance, a deep-neural-network (DNN) PA strategy is proposed. Simulation results show that the proposed low-complexity ML detector, with a lower-complexity, has the same bit error rate performance as the joint ML method while the proposed DNN method strikes a good balance between complexity and SR performance.
109 - Yihuan Liao , Min Qiu , 2021
This paper investigates the design of spatially coupled low-density parity-check (SC-LDPC) codes constructed from connected-chain ensembles for bit-interleaved coded modulation (BICM) schemes. For short coupling lengths, connecting multiple SC-LDPC chains can improve decoding performance over single-chains and impose structured unequal error protection (UEP). A joint design of connected-chain ensembles and bit mapping to further exploit the UEP from codes and high-order modulations is proposed. Numerical results demonstrate the superiority of the proposed design over existing connected-chain ensembles and over single-chain ensembles with existing bit mapping design.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا