Do you want to publish a course? Click here

Tracking Fast Neural Adaptation by Globally Adaptive Point Process Estimation for Brain-Machine Interface

126   0   0.0 ( 0 )
 Added by Shuhang Chen
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Brain-machine interfaces (BMIs) help the disabled restore body functions by translating neural activity into digital commands to control external devices. Neural adaptation, where the brain signals change in response to external stimuli or movements, plays an important role in BMIs. When subjects purely use neural activity to brain-control a prosthesis, some neurons will actively explore a new tuning property to accomplish the movement task. The prediction of this neural tuning property can help subjects adapt more efficiently to brain control and maintain good decoding performance. Existing prediction methods track the slow change of the tuning property in the manual control, which is not suitable for the fast neural adaptation in brain control. In order to identify the active neurons in brain control and track their tuning property changes, we propose a globally adaptive point process method (GaPP) to estimate the neural modulation state from spike trains, decompose the states into the hyper preferred direction and reconstruct the kinematics in a dual-model framework. We implement the method on real data from rats performing a two-lever discrimination task under manual control and brain control. The results show our method successfully predicts the neural modulation state and identifies the neurons that become active in brain control. Compared to existing methods, ours tracks the fast changes of the hyper preferred direction from manual control to brain control more accurately and efficiently and reconstructs the kinematics better and faster.



rate research

Read More

Brain-computer interface (BCI) systems have potential as assistive technologies for individuals with severe motor impairments. Nevertheless, individuals must first participate in many training sessions to obtain adequate data for optimizing the classification algorithm and subsequently acquiring brain-based control. Such traditional training paradigms have been dubbed unengaging and unmotivating for users. In recent years, it has been shown that the synergy of virtual reality (VR) and a BCI can lead to increased user engagement. This study created a 3-class BCI with a rather elaborate EEG signal processing pipeline that heavily utilizes machine learning. The BCI initially presented sham feedback but was eventually driven by EEG associated with motor imagery. The BCI tasks consisted of motor imagery of the feet and left and right hands, which were used to navigate a single-path maze in VR. Ten of the eleven recruited participants achieved online performance superior to chance (p < 0.01), while the majority successfully completed more than 70% of the prescribed navigational tasks. These results indicate that the proposed paradigm warrants further consideration as neurofeedback BCI training tool. A paradigm that allows users, from their perspective, control from the outset without the need for prior data collection sessions.
Brain-computer interfaces (BCIs) can provide an alternative means of communication for individuals with severe neuromuscular limitations. The P300-based BCI speller relies on eliciting and detecting transient event-related potentials (ERPs) in electroencephalography (EEG) data, in response to a user attending to rarely occurring target stimuli amongst a series of non-target stimuli. However, in most P300 speller implementations, the stimuli to be presented are randomly selected from a limited set of options and stimulus selection and presentation are not optimized based on previous user data. In this work, we propose a data-driven method for stimulus selection based on the expected discrimination gain metric. The data-driven approach selects stimuli based on previously observed stimulus responses, with the aim of choosing a set of stimuli that will provide the most information about the users intended target character. Our approach incorporates knowledge of physiological and system constraints imposed due to real-time BCI implementation. Simulations were performed to compare our stimulus selection approach to the row-column paradigm, the conventional stimulus selection method for P300 spellers. Results from the simulations demonstrated that our adaptive stimulus selection approach has the potential to significantly improve performance from the conventional method: up to 34% improvement in accuracy and 43% reduction in the mean number of stimulus presentations required to spell a character in a 72-character grid. In addition, our greedy approach to stimulus selection provides the flexibility to accommodate design constraints.
Convolutional Neural Networks (CNN) outperform traditional classification methods in many domains. Recently these methods have gained attention in neuroscience and particularly in brain-computer interface (BCI) community. Here, we introduce a CNN optimized for classification of brain states from magnetoencephalographic (MEG) measurements. Our CNN design is based on a generative model of the electromagnetic (EEG and MEG) brain signals and is readily interpretable in neurophysiological terms. We show here that the proposed network is able to decode event-related responses as well as modulations of oscillatory brain activity and that it outperforms more complex neural networks and traditional classifiers used in the field. Importantly, the model is robust to inter-individual differences and can successfully generalize to new subjects in offline and online classification.
415 - Qi She , Anqi Wu 2019
Latent dynamics discovery is challenging in extracting complex dynamics from high-dimensional noisy neural data. Many dimensionality reduction methods have been widely adopted to extract low-dimensional, smooth and time-evolving latent trajectories. However, simple state transition structures, linear embedding assumptions, or inflexible inference networks impede the accurate recovery of dynamic portraits. In this paper, we propose a novel latent dynamic model that is capable of capturing nonlinear, non-Markovian, long short-term time-dependent dynamics via recurrent neural networks and tackling complex nonlinear embedding via non-parametric Gaussian process. Due to the complexity and intractability of the model and its inference, we also provide a powerful inference network with bi-directional long short-term memory networks that encode both past and future information into posterior distributions. In the experiment, we show that our model outperforms other state-of-the-art methods in reconstructing insightful latent dynamics from both simulated and experimental neural datasets with either Gaussian or Poisson observations, especially in the low-sample scenario. Our codes and additional materials are available at https://github.com/sheqi/GP-RNN_UAI2019.
395 - Erwan Vaineau 2019
We describe the experimental procedures for a dataset that we have made publicly available at https://doi.org/10.5281/zenodo.1494163 in mat and csv formats. This dataset contains electroencephalographic (EEG) recordings of 24 subjects doing a visual P300 Brain-Computer Interface experiment on PC. The visual P300 is an event-related potential elicited by visual stimulation, peaking 240-600 ms after stimulus onset. The experiment was designed in order to compare the use of a P300-based brain-computer interface on a PC with and without adaptive calibration using Riemannian geometry. The brain-computer interface is based on electroencephalography (EEG). EEG data were recorded thanks to 16 electrodes. Data were recorded during an experiment taking place in the GIPSA-lab, Grenoble, France, in 2013 (Congedo, 2013). Python code for manipulating the data is available at https://github.com/plcrodrigues/py.BI.EEG.2013-GIPSA. The ID of this dataset is BI.EEG.2013-GIPSA.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا