Do you want to publish a course? Click here

ROD: Reception-aware Online Distillation for Sparse Graphs

104   0   0.0 ( 0 )
 Added by Wentao Zhang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Graph neural networks (GNNs) have been widely used in many graph-based tasks such as node classification, link prediction, and node clustering. However, GNNs gain their performance benefits mainly from performing the feature propagation and smoothing across the edges of the graph, thus requiring sufficient connectivity and label information for effective propagation. Unfortunately, many real-world networks are sparse in terms of both edges and labels, leading to sub-optimal performance of GNNs. Recent interest in this sparse problem has focused on the self-training approach, which expands supervised signals with pseudo labels. Nevertheless, the self-training approach inherently cannot realize the full potential of refining the learning performance on sparse graphs due to the unsatisfactory quality and quantity of pseudo labels. In this paper, we propose ROD, a novel reception-aware online knowledge distillation approach for sparse graph learning. We design three supervision signals for ROD: multi-scale reception-aware graph knowledge, task-based supervision, and rich distilled knowledge, allowing online knowledge transfer in a peer-teaching manner. To extract knowledge concealed in the multi-scale reception fields, ROD explicitly requires individual student models to preserve different levels of locality information. For a given task, each student would predict based on its reception-scale knowledge, while simultaneously a strong teacher is established on-the-fly by combining multi-scale knowledge. Our approach has been extensively evaluated on 9 datasets and a variety of graph-based tasks, including node classification, link prediction, and node clustering. The result demonstrates that ROD achieves state-of-art performance and is more robust for the graph sparsity.



rate research

Read More

Feature maps contain rich information about image intensity and spatial correlation. However, previous online knowledge distillation methods only utilize the class probabilities. Thus in this paper, we propose an online knowledge distillation method that transfers not only the knowledge of the class probabilities but also that of the feature map using the adversarial training framework. We train multiple networks simultaneously by employing discriminators to distinguish the feature map distributions of different networks. Each network has its corresponding discriminator which discriminates the feature map from its own as fake while classifying that of the other network as real. By training a network to fool the corresponding discriminator, it can learn the other networks feature map distribution. We show that our method performs better than the conventional direct alignment method such as L1 and is more suitable for online distillation. Also, we propose a novel cyclic learning scheme for training more than two networks together. We have applied our method to various network architectures on the classification task and discovered a significant improvement of performance especially in the case of training a pair of a small network and a large one.
For many data mining and machine learning tasks, the quality of a similarity measure is the key for their performance. To automatically find a good similarity measure from datasets, metric learning and similarity learning are proposed and studied extensively. Metric learning will learn a Mahalanobis distance based on positive semi-definite (PSD) matrix, to measure the distances between objectives, while similarity learning aims to directly learn a similarity function without PSD constraint so that it is more attractive. Most of the existing similarity learning algorithms are online similarity learning method, since online learning is more scalable than offline learning. However, most existing online similarity learning algorithms learn a full matrix with d 2 parameters, where d is the dimension of the instances. This is clearly inefficient for high dimensional tasks due to its high memory and computational complexity. To solve this issue, we introduce several Sparse Online Relative Similarity (SORS) learning algorithms, which learn a sparse model during the learning process, so that the memory and computational cost can be significantly reduced. We theoretically analyze the proposed algorithms, and evaluate them on some real-world high dimensional datasets. Encouraging empirical results demonstrate the advantages of our approach in terms of efficiency and efficacy.
Relevance has significant impact on user experience and business profit for e-commerce search platform. In this work, we propose a data-driven framework for search relevance prediction, by distilling knowledge from BERT and related multi-layer Transformer teacher models into simple feed-forward networks with large amount of unlabeled data. The distillation process produces a student model that recovers more than 97% test accuracy of teacher models on new queries, at a serving cost thats several magnitude lower (latency 150x lower than BERT-Base and 15x lower than the most efficient BERT variant, TinyBERT). The applications of temperature rescaling and teacher model stacking further boost model accuracy, without increasing the student model complexity. We present experimental results on both in-house e-commerce search relevance data as well as a public data set on sentiment analysis from the GLUE benchmark. The latter takes advantage of another related public data set of much larger scale, while disregarding its potentially noisy labels. Embedding analysis and case study on the in-house data further highlight the strength of the resulting model. By making the data processing and model training source code public, we hope the techniques presented here can help reduce energy consumption of the state of the art Transformer models and also level the playing field for small organizations lacking access to cutting edge machine learning hardwares.
Techniques such as ensembling and distillation promise model quality improvements when paired with almost any base model. However, due to increased test-time cost (for ensembles) and increased complexity of the training pipeline (for distillation), these techniques are challenging to use in industrial settings. In this paper we explore a variant of distillation which is relatively straightforward to use as it does not require a complicated multi-stage setup or many new hyperparameters. Our first claim is that online distillation enables us to use extra parallelism to fit very large datasets about twice as fast. Crucially, we can still speed up training even after we have already reached the point at which additional parallelism provides no benefit for synchronous or asynchronous stochastic gradient descent. Two neural networks trained on disjoint subsets of the data can share knowledge by encouraging each model to agree with the predictions the other model would have made. These predictions can come from a stale version of the other model so they can be safely computed using weights that only rarely get transmitted. Our second claim is that online distillation is a cost-effective way to make the exact predictions of a model dramatically more reproducible. We support our claims using experiments on the Criteo Display Ad Challenge dataset, ImageNet, and the largest to-date dataset used for neural language modeling, containing $6times 10^{11}$ tokens and based on the Common Crawl repository of web data.
We investigate the hardness of online reinforcement learning in fixed horizon, sparse linear Markov decision process (MDP), with a special focus on the high-dimensional regime where the ambient dimension is larger than the number of episodes. Our contribution is two-fold. First, we provide a lower bound showing that linear regret is generally unavoidable in this case, even if there exists a policy that collects well-conditioned data. The lower bound construction uses an MDP with a fixed number of states while the number of actions scales with the ambient dimension. Note that when the horizon is fixed to one, the case of linear stochastic bandits, the linear regret can be avoided. Second, we show that if the learner has oracle access to a policy that collects well-conditioned data then a variant of Lasso fitted Q-iteration enjoys a nearly dimension-free regret of $tilde{O}( s^{2/3} N^{2/3})$ where $N$ is the number of episodes and $s$ is the sparsity level. This shows that in the large-action setting, the difficulty of learning can be attributed to the difficulty of finding a good exploratory policy.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا