Do you want to publish a course? Click here

Asymptotic expansion of the annealed Greens function and its derivatives

79   0   0.0 ( 0 )
 Added by Marius Lemm
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider random elliptic equations in dimension $dgeq 3$ at small ellipticity contrast. We derive the large-distance asymptotic expansion of the annealed Greens function up to order $4$ in $d=3$ and up to order $d+2$ for $dgeq 4$. We also derive asymptotic expansions of its derivatives. The obtained precision lies far beyond what is established in prior results in stochastic homogenization theory. Our proof builds on a recent breakthrough in perturbative stochastic homogenization by Bourgain in a refined version shown by Kim and the second author, and on Fourier-analytic techniques of Uchiyama.



rate research

Read More

In this paper we study the time dependent Schrodinger equation with all possible self-adjoint singular interactions located at the origin, which include the $delta$ and $delta$-potentials as well as boundary conditions of Dirichlet, Neumann, and Robin type as particular cases. We derive an explicit representation of the time dependent Greens function and give a mathematical rigorous meaning to the corresponding integral for holomorphic initial conditions, using Fresnel integrals. Superoscillatory functions appear in the context of weak measurements in quantum mechanics and are naturally treated as holomorphic entire functions. As an application of the Greens function we study the stability and oscillatory properties of the solution of the Schrodinger equation subject to a generalized point interaction when the initial datum is a superoscillatory function.
105 - Sergey A. Denisov 2021
We study the spatial asymptotics of Greens function for the 1d Schrodinger operator with operator-valued decaying potential. The bounds on the entropy of the spectral measures are obtained. They are used to establish the presence of a.c. spectrum
Continuing a line of investigation initiated in [11] exploring the connections between Jost and Evans functions and (modified) Fredholm determinants of Birman-Schwinger type integral operators, we here examine the stability index, or sign of the first nonvanishing derivative at frequency zero of the characteristic determinant, an object that has found considerable use in the study by Evans function techniques of stability of standing and traveling wave solutions of partial differential equations (PDE) in one dimension. This leads us to the derivation of general perturbation expansions for analytically-varying modified Fredholm determinants of abstract operators. Our main conclusion, similarly in the analysis of the determinant itself, is that the derivative of the characteristic Fredholm determinant may be efficiently computed from first principles for integral operators with semi-separable integral kernels, which include in particular the general one-dimensional case, and for sums thereof, which latter possibility appears to offer applications in the multi-dimensional case. A second main result is to show that the multi-dimensional characteristic Fredholm determinant is the renormalized limit of a sequence of Evans functions defined in [23] on successive Galerkin subspaces, giving a natural extension of the one-dimensional results of [11] and answering a question of [27] whether this sequence might possibly converge (in general, no, but with renormalization, yes). Convergence is useful in practice for numerical error control and acceleration.
99 - Chao Ding , John Ryan 2020
A bosonic Laplacian is a conformally invariant second order differential operator acting on smooth functions defined on domains in Euclidean space and taking values in higher order irreducible representations of the special orthogonal group. In this paper, we firstly introduce the motivation for study of the generalized Maxwell operators and bosonic Laplacians (also known as the higher spin Laplace operators). Then, with the help of connections between Rarita-Schwinger type operators and bosonic Laplacians, we solve Poissons equation for bosonic Laplacians. A representation formula for bounded solutions to Poissons equation in Euclidean space is also provided. In the end, we provide Greens formulas for bosonic Laplacians in scalar-valued and Clifford-valued cases, respectively. These formulas reveal that bosonic Laplacians are self-adjoint with respect to a given $L^2$ inner product on certain compact supported function spaces.
The Persistent Turning Walker Model (PTWM) was introduced by Gautrais et al in Mathematical Biology for the modelling of fish motion. It involves a nonlinear pathwise functional of a non-elliptic hypo-elliptic diffusion. This diffusion solves a kinetic Fokker-Planck equation based on an Ornstein-Uhlenbeck Gaussian process. The long time diffusive behavior of this model was recently studied by Degond & Motsch using partial differential equations techniques. This model is however intrinsically probabilistic. In the present paper, we show how the long time diffusive behavior of this model can be essentially recovered and extended by using appropriate tools from stochastic analysis. The approach can be adapted to many other kinetic probabilistic models.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا