Do you want to publish a course? Click here

Greens Formulas and Poissons Equation for Bosonic Laplacians

100   0   0.0 ( 0 )
 Added by Chao Ding
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

A bosonic Laplacian is a conformally invariant second order differential operator acting on smooth functions defined on domains in Euclidean space and taking values in higher order irreducible representations of the special orthogonal group. In this paper, we firstly introduce the motivation for study of the generalized Maxwell operators and bosonic Laplacians (also known as the higher spin Laplace operators). Then, with the help of connections between Rarita-Schwinger type operators and bosonic Laplacians, we solve Poissons equation for bosonic Laplacians. A representation formula for bounded solutions to Poissons equation in Euclidean space is also provided. In the end, we provide Greens formulas for bosonic Laplacians in scalar-valued and Clifford-valued cases, respectively. These formulas reveal that bosonic Laplacians are self-adjoint with respect to a given $L^2$ inner product on certain compact supported function spaces.



rate research

Read More

In this paper we study the time dependent Schrodinger equation with all possible self-adjoint singular interactions located at the origin, which include the $delta$ and $delta$-potentials as well as boundary conditions of Dirichlet, Neumann, and Robin type as particular cases. We derive an explicit representation of the time dependent Greens function and give a mathematical rigorous meaning to the corresponding integral for holomorphic initial conditions, using Fresnel integrals. Superoscillatory functions appear in the context of weak measurements in quantum mechanics and are naturally treated as holomorphic entire functions. As an application of the Greens function we study the stability and oscillatory properties of the solution of the Schrodinger equation subject to a generalized point interaction when the initial datum is a superoscillatory function.
69 - Cyril Letrouit 2020
We establish two results concerning the Quantum Limits (QLs) of some sub-Laplacians. First, under a commutativity assumption on the vector fields involved in the definition of the sub-Laplacian, we prove that it is possible to split any QL into several pieces which can be studied separately, and which come from well-characterized parts of the associated sequence of eigenfunctions. Secondly, building upon this result, we classify all QLs of a particular family of sub-Laplacians defined on products of compact quotients of Heisenberg groups. We express the QLs through a disintegration of measure result which follows from a natural spectral decomposition of the sub-Laplacian in which harmonic oscillators appear.Both results are based on the construction of an adequate elliptic operator commuting with the sub-Laplacian, and on the associated joint spectral calculus. They illustrate the fact that, because of the possibly high degeneracy of the spectrum, the spectral theory of sub-Laplacians can be very rich.
We review previous work on spectral flow in connection with certain self-adjoint model operators ${A(t)}_{tin mathbb{R}}$ on a Hilbert space $mathcal{H}$, joining endpoints $A_pm$, and the index of the operator $D_{A}^{}= (d/d t) + A$ acting in $L^2(mathbb{R}; mathcal{H})$, where $A$ denotes the operator of multiplication $(A f)(t) = A(t)f(t)$. In this article we review what is known when these operators have some essential spectrum and describe some new results in terms of associated spectral shift functions. We are especially interested in extensions to non-Fredholm situations, replacing the Fredholm index by the Witten index, and use a particular $(1+1)$-dimensional model setup to illustrate our approach based on spectral shift functions.
We consider random elliptic equations in dimension $dgeq 3$ at small ellipticity contrast. We derive the large-distance asymptotic expansion of the annealed Greens function up to order $4$ in $d=3$ and up to order $d+2$ for $dgeq 4$. We also derive asymptotic expansions of its derivatives. The obtained precision lies far beyond what is established in prior results in stochastic homogenization theory. Our proof builds on a recent breakthrough in perturbative stochastic homogenization by Bourgain in a refined version shown by Kim and the second author, and on Fourier-analytic techniques of Uchiyama.
69 - Haoshu Li , Shaolong Wan 2021
Greens function in non-Hermitian systems has recently been revealed to be capable of directional amplification in some cases. The exact formulas for end-to-end Greens functions are significantly important for both studies of non-Hermitian systems and their applications. In this work, based on the Widoms formula, we derive exact formulas for the end-to-end Greens functions which depend on the roots of a simple algebraic equation. These exact formulas allow direct and accurate comparisons between theoretical results and experimentally measured quantities. In addition, we verify the prior established integral formula in the bulk region to agree with the result in our framework.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا