No Arabic abstract
The superconducting fluxonium circuit is an RF-SQUID-type flux qubit that uses a large inductance built from an array of Josephson junctions or a high kinetic inductance material. This inductance suppresses charge sensitivity exponentially and flux sensitivity quadratically. In contrast to the transmon qubit, the anharmonicity of fluxonium can be large and positive, allowing for better separation between the low energy qubit manifold of the circuit and higher-lying excited states. Here, we propose a tunable coupling scheme for implementing two-qubit gates on fixed-frequency fluxonium qubits, biased at half flux quantum. In this system, both qubits and coupler are coupled capacitively and implemented as fluxonium circuits with an additional harmonic mode. We investigate the performance of the scheme by simulating a universal two-qubit fSim gate. In the proposed approach, we rely on a planar on-chip architecture for the whole device. Our design is compatible with existing hardware for transmon-based devices, with the additional advantage of lower qubit frequency facilitating high-precision gating.
We extend recent work on a leakage-protected, adiabatic entangling gate for exchange-only spin qubits [Doherty and Wardrop, PRL 111, 050503 (2013)] by adapting to a setting where single spins are not assumed to be polarized on preparation. Previous gate constructions do not function correctly when gauge spins are uninitialized, because the entangling gate has different, non-trivial action in different gauge subspaces. Our construction inherits many of the desirable features of the previous work while addressing the gauge-dependent behavior. Using numerical simulation, we show that the resulting gate implements the same logical operation in both gauge subspaces to first order in perturbation theory, and second-order terms introduce an error that decreases quadratically in the duration of the gate. We add $1/f$ charge noise to voltages modulating exchange in this model, which introduces errors that increase with gate time, to show that there is an optimal gate duration for a given set of device parameters.
We demonstrate diabatic two-qubit gates with Pauli error rates down to $4.3(2)cdot 10^{-3}$ in as fast as 18 ns using frequency-tunable superconducting qubits. This is achieved by synchronizing the entangling parameters with minima in the leakage channel. The synchronization shows a landscape in gate parameter space that agrees with model predictions and facilitates robust tune-up. We test both iSWAP-like and CPHASE gates with cross-entropy benchmarking. The presented approach can be extended to multibody operations as well.
High-quality two-qubit gate operations are crucial for scalable quantum information processing. Often, the gate fidelity is compromised when the system becomes more integrated. Therefore, a low-error-rate, easy-to-scale two-qubit gate scheme is highly desirable. Here, we experimentally demonstrate a new two-qubit gate scheme that exploits fixed-frequency qubits and a tunable coupler in a superconducting quantum circuit. The scheme requires less control lines, reduces crosstalk effect, simplifies calibration procedures, yet produces a controlled-Z gate in 30ns with a high fidelity of 99.5%, derived from the interleaved randomized benchmarking method. Error analysis shows that gate errors are mostly coherence limited. Our demonstration paves the way for large-scale implementation of high-fidelity quantum operations.
Near-term quantum computers are limited by the decoherence of qubits to only being able to run low-depth quantum circuits with acceptable fidelity. This severely restricts what quantum algorithms can be compiled and implemented on such devices. One way to overcome these limitations is to expand the available gate set from single- and two-qubit gates to multi-qubit gates, which entangle three or more qubits in a single step. Here, we show that such multi-qubit gates can be realized by the simultaneous application of multiple two-qubit gates to a group of qubits where at least one qubit is involved in two or more of the two-qubit gates. Multi-qubit gates implemented in this way are as fast as, or sometimes even faster than, the constituent two-qubit gates. Furthermore, these multi-qubit gates do not require any modification of the quantum processor, but are ready to be used in current quantum-computing platforms. We demonstrate this idea for two specific cases: simultaneous controlled-Z gates and simultaneous iSWAP gates. We show how the resulting multi-qubit gates relate to other well-known multi-qubit gates and demonstrate through numerical simulations that they would work well in available quantum hardware, reaching gate fidelities well above 99 %. We also present schemes for using these simultaneous two-qubit gates to swiftly create large entangled states like Dicke and Greenberg-Horne-Zeilinger states.
Superconducting circuits with coupler architecture receive considerable attention due to their advantages in tunability and scalability. Although single-qubit gates with low error have been achieved, high-fidelity two-qubit gates in coupler architecture are still challenging. This paper pays special attention to examining the gate error sources and primarily concentrates on the related physical mechanism of ZZ parasitic couplings using a systematic effective Hamiltonian approach. Benefiting from the effective Hamiltonian, we provide simple and straightforward insight into the ZZ parasitic couplings that were investigated previously from numerical and experimental perspectives. The analytical results obtained provide exact quantitative conditions for eliminating ZZ parasitic couplings, and trigger four novel realizable parameter regions in which higher fidelity two-qubit gates are expected. Beyond the numerical simulation, we also successfully drive a simple analytical result of the two-qubit gate error from which the trade-off effect between qubit energy relaxation effects and ZZ parasitic couplings is understood, and the resulting two-qubit gate error can be estimated straightforwardly. Our study opens up new opportunities to implement high-fidelity two-qubit gates in superconducting coupler architecture.