No Arabic abstract
It is challenging to grow an epitaxial four-fold compound superconductor (SC) on six-fold topological insulator (TI) platform due to stringent lattice-matching requirement. Here, we demonstrate that Fe(Te,Se) can grow epitaxially on a TI (Bi2Te3) layer due to accidental, uniaxial lattice match, which is dubbed as hybrid symmetry epitaxy. This new growth mode is critical to stabilizing robust superconductivity with TC as high as 13 K. Furthermore, the superconductivity in this FeTe1-xSex/Bi2Te3 system survives in Te-rich phase with Se content as low as x = 0.03 but vanishes at Se content above x = 0.56, exhibiting a phase diagram that is quite different from that of the conventional Fe(Te,Se) systems. This unique heterostructure platform that can be formed in both TI-on-SC and SC-on-TI sequences opens a route to unprecedented topological heterostructures.
Interest in the superconducting proximity effect has recently been reignited by theoretical predictions that it could be used to achieve topological superconductivity. Low-T$_{c}$ superconductors have predominantly been used in this effort, but small energy scales of ~1 meV have hindered the characterization of the emergent electronic phase, limiting it to extremely low temperatures. In this work, we use molecular beam epitaxy to grow topological insulator Bi$_{2}$Te$_{3}$ in a range of thicknesses on top of a high-T$_{c}$ superconductor Fe(Te,Se). Using scanning tunneling microscopy and spectroscopy, we detect {Delta}$_{ind}$ as high as ~3.5 meV, which is the largest reported gap induced by proximity to an s-wave superconductor to-date. We find that {Delta}$_{ind}$ decays with Bi$_{2}$Te$_{3}$ thickness, but remains finite even after the topological surface states had been formed. Finally, by imaging the scattering and interference of surface state electrons, we provide a microscopic visualization of the fully gaped Bi$_{2}$Te$_{3}$ surface state due to Cooper pairing. Our results establish Fe-based high-T$_{c}$ superconductors as a promising new platform for realizing high-T$_{c}$ topological superconductivity.
The idea of employing non-Abelian statistics for error-free quantum computing ignited interest in recent reports of topological surface superconductivity and Majorana zero modes (MZMs) in FeTe$_{0.55}$Se$_{0.45}$. An associated puzzle is that the topological features and superconducting properties are not observed uniformly across the sample surface. Understanding and practical control of these electronic inhomogeneities present a prominent challenge for potential applications. Here, we combine neutron scattering, scanning angle-resolved photoemission spectroscopy (ARPES), and microprobe composition and resistivity measurements to characterize the electronic state of Fe$_{1+y}$Te$_{1-x}$Se$_{x}$. We establish a phase diagram in which the superconductivity is observed only at sufficiently low Fe concentration, in association with distinct antiferromagnetic correlations, while the coexisting topological surface state occurs only at sufficiently high Te concentration. We find that FeTe$_{0.55}$Se$_{0.45}$ is located very close to both phase boundaries, which explains the inhomogeneity of superconducting and topological states. Our results demonstrate the compositional control required for use of topological MZMs in practical applications.
We report on the first local atomic structure study via the pair density function (PDF) analysis of neutron diffraction data and show a direct correlation of local coordinates to TC in the newly discovered superconducting FeSe1-xTex. The isovalent substitution of Te for Se such as in FeSe0.5Te0.5 increases Tc by twofold in comparison to a-FeSe without changing the carrier concentration but, on average, decreases the chalcogen-Fe bond angle. However, we find that the local symmetry is lower than the average P4/nmm crystal symmetry, because the Se and Te ions do not share the same site, leading to two distinct z-coordinates that exhibit two types of bond angles with Fe. The angle indeed increases from ~ 104.02o in FeSe to ~105.20o in FeSe0.5Te0.5 between Fe and Se. Simultaneously, ab-initio calculations based on spin density function theory yielded an optimized structure with distinct z-coordinates for Se and Te, in agreement with the experiment. The valence charge distribution in the Fe-Se bonds was found to be different from that in the Fe-Te bonds. Thus, superconductivity in this chalcogenide is closely related to the local structural environment, with direct implications on the multiband magnetism where modulations of the ionic lattice can change the distribution of valence electrons.
Topological superconductivity is one of the frontier research directions in condensed matter physics. One of the unique elementary excitations in topological superconducting state is the Majorana fermion (mode) which is its own antiparticle and obeys the non-Abelian statistics, and thus useful for constructing the fault-tolerant quantum computing. The evidence for Majorana fermions (mode) in condensed matter state is now quickly accumulated. Here we report the easily achievable zero-energy mode on the tunneling spectra on Bi islands deposited on the Fe(Te,Se) superconducting single crystals. We interpret this result as the consequence of proximity effect induced topological superconductivity on the Bi islands with strong spin-orbital coupling effect. The zero-energy mode is argued to be the signature of the Majorana modes in this size confined system.
Majorana quasiparticles (MQPs) in condensed matter play an important role in strategies for topological quantum computing but still remain elusive. Vortex cores of topological superconductors may accommodate MQPs that appear as the zero-energy vortex bound state (ZVBS). An iron-based superconductor Fe(Se,Te) possesses a superconducting topological surface state that has been investigated by scanning tunneling microscopies to detect the ZVBS. However, the results are still controversial. Here, we performed spectroscopic-imaging scanning tunneling microscopy with unprecedentedly high energy resolution to clarify the nature of the vortex bound states in Fe(Se,Te). We found the ZVBS at 0 $pm$ 20 $mu$eV suggesting its MQP origin, and revealed that some vortices host the ZVBS while others do not. The fraction of vortices hosting the ZVBS decreases with increasing magnetic field, while chemical and electronic quenched disorders are apparently unrelated to the ZVBS. These observations elucidate the conditions to achieve the ZVBS, and may lead to controlling MQPs.