Do you want to publish a course? Click here

No indication of chiral flux current in the topological kagome metal CsV$_{3}$Sb$_{5}$

76   0   0.0 ( 0 )
 Added by Huan Yang
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Compounds with kagome lattice usually host many exotic quantum states, including the quantum spin liquid, non-trivial topological Dirac bands and a strongly renormalized flat band, etc. Recently an interesting vanadium based kagome family $A$V$_{3}$Sb$_{5}$ ($A$ = K, Rb, or Cs) was discovered, and these materials exhibit multiple interesting properties, including unconventional saddle-point driven charge density wave (CDW) state, superconductivity, etc. Furthermore, some experiments show anomalous Hall effect which inspires that there might be some chiral flux current states. Here we report scanning tunneling measurements by using spin polarized tips. Although we have observed clearly the $2times2$ and $1times4$ CDW orders, the well-designed experiments with refined spin polarized tips do not reveal any trace of the chiral flux current phase in CsV$_3$Sb$_5$. Thus it remains debatable whether this state really exists in CsV$_3$Sb$_5$ and we may need additional scenario to explain the anomalous Hall effect.



rate research

Read More

Phase transitions governed by spontaneous time reversal symmetry breaking (TRSB) have long been sought in many quantum systems, including materials with anomalous Hall effect (AHE), cuprate high temperature superconductors, Iridates and so on. However, experimentally identifying such a phase transition is extremely challenging because the transition is hidden from many experimental probes. Here, using zero-field muon spin relaxation (ZF-$mu$SR) technique, we observe strong TRSB signals below 70 K in the newly discovered kagome superconductor CsV$_3$Sb$_5$. The TRSB state emerges from the 2 x 2 charge density wave (CDW) phase present below ~ 95 K. By carrying out optical second-harmonic generation (SHG) experiments, we also find that inversion symmetry is maintained in the temperature range of interest. Combining all the experimental results and symmetry constraints, we conclude that the interlayer coupled chiral flux phase (CFP) is the most promising candidate for the TRSB state among all theoretical proposals of orbital current orders. Thus, this prototypical kagome metal CsV3Sb5 can be a platform to establish a TRSB current-ordered state and explore its relationship with CDW, giant AHE, and superconductivity.
Understanding the link between a charge density wave (CDW) instability and superconductivity is a central theme of the 2D metallic kagome compounds $A$V$_3$Sb$_5$ ($A$=K, Rb, and Cs). Using polarization-resolved electronic Raman spectroscopy, we shed light on Fermi surface fluctuations and electronic instabilities. We observe a quasielastic peak (QEP) whose spectral weight is progressively enhanced towards the superconducting transition. The QEP temperature-dependence reveals a steep increase in coherent in-plane charge correlations within the charge-density phase. In contrast, out-of-plane charge fluctuations remain strongly incoherent across the investigated temperature range. In-plane phonon anomalies appear at $T^*sim 50$~K in addition to right below $T_{mathrm{CDW}}sim 95$~K, while showing no apparent evidence of reduced symmetry at low temperatures. In conjunction with the consecutive phonon anomalies within the CDW state, our electronic Raman data unveil additional electronic instabilities that persist down to the superconducting phase, thereby offering a superconducting mechanism.
We report on a detailed study of the optical properties of CsV$_{3}$Sb$_{5}$ at a large number of temperatures above and below the charge-density-wave (CDW) transition. Above the CDW transition, the low-frequency optical conductivity reveals two Drude components with distinct widths. An examination of the band structure allows us to ascribe the narrow Drude to multiple light and Dirac bands, and the broad Drude to the heavy bands near the $M$ points which form saddle points near the Fermi level. Upon entering the CDW state, the opening of the CDW gap is clearly observed. A large portion of the broad Drude is removed by the gap, whereas the narrow Drude is not affected. Meanwhile, an absorption peak associated with interband transitions near the saddle points shifts to higher energy and grows in weight. These observations are consistent with the scenario that the CDW in CsV$_{3}$Sb$_{5}$ is driven by nesting of Fermi surfaces near the saddle points at $M$.
162 - Chao Mu , Qiangwei Yin , Zhijun Tu 2021
We report $^{121/123}$Sb nuclear quadrupole resonance (NQR) and $^{51}$V nuclear magnetic resonance (NMR) measurements on kagome metal CsV$_3$Sb$_5$ with $T_{rm c}=2.5$ K. Both $^{51}$V NMR spectra and $^{121/123}$Sb NQR spectra split after a charge density wave (CDW) transition, which demonstrates a commensurate CDW state. The coexistence of the high temperature phase and the CDW phase between $91$ K and $94$ K manifests that it is a first order phase transition. At low temperature, electric-field-gradient fluctuations diminish and magnetic fluctuations become dominant. Superconductivity emerges in the charge order state. Knight shift decreases and $1/T_{1}T$ shows a Hebel--Slichter coherence peak just below $T_{rm c}$, indicating that CsV$_3$Sb$_5$ is an s-wave superconductor.
Temperature-dependent reflectivity measurements on the kagome metal CsV$_3$Sb$_5$ in a broad frequency range of $50-20000$ cm$^{-1}$ down to $T$=10 K are reported. The charge-density wave (CDW) formed below $T_{rm CDW}$ = 94 K manifests itself in a prominent spectral-weight transfer from low to higher energy regions. The CDW gap of 60-75 meV is observed at the lowest temperature and shows significant deviations from an isotropic BCS-type mean-field behavior. Absorption peaks appear at frequencies as low as 200 cm$^{-1}$ and can be identified with interband transitions according to density-functional calculations. The change in the interband absorption compared to KV$_3$Sb$_5$ reflects the inversion of band saddle points between the K and Cs compounds. Additionally, a broader and strongly temperature-dependent absorption feature is observed below 1000 cm$^{-1}$ and assigned to a displaced Drude peak. It reflects localization effects on charge carriers.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا