Do you want to publish a course? Click here

3D Brain Reconstruction by Hierarchical Shape-Perception Network from a Single Incomplete Image

133   0   0.0 ( 0 )
 Added by Shuqiang Wang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

3D shape reconstruction is essential in the navigation of minimally-invasive and auto robot-guided surgeries whose operating environments are indirect and narrow, and there have been some works that focused on reconstructing the 3D shape of the surgical organ through limited 2D information available. However, the lack and incompleteness of such information caused by intraoperative emergencies (such as bleeding) and risk control conditions have not been considered. In this paper, a novel hierarchical shape-perception network (HSPN) is proposed to reconstruct the 3D point clouds (PCs) of specific brains from one single incomplete image with low latency. A tree-structured predictor and several hierarchical attention pipelines are constructed to generate point clouds that accurately describe the incomplete images and then complete these point clouds with high quality. Meanwhile, attention gate blocks (AGBs) are designed to efficiently aggregate geometric local features of incomplete PCs transmitted by hierarchical attention pipelines and internal features of reconstructing point clouds. With the proposed HSPN, 3D shape perception and completion can be achieved spontaneously. Comprehensive results measured by Chamfer distance and PC-to-PC error demonstrate that the performance of the proposed HSPN outperforms other competitive methods in terms of qualitative displays, quantitative experiment, and classification evaluation.



rate research

Read More

113 - M. Nakao , F. Tong , M. Nakamura 2021
Shape reconstruction of deformable organs from two-dimensional X-ray images is a key technology for image-guided intervention. In this paper, we propose an image-to-graph convolutional network (IGCN) for deformable shape reconstruction from a single-viewpoint projection image. The IGCN learns relationship between shape/deformation variability and the deep image features based on a deformation mapping scheme. In experiments targeted to the respiratory motion of abdominal organs, we confirmed the proposed framework with a regularized loss function can reconstruct liver shapes from a single digitally reconstructed radiograph with a mean distance error of 3.6mm.
Fusing medical images and the corresponding 3D shape representation can provide complementary information and microstructure details to improve the operational performance and accuracy in brain surgery. However, compared to the substantial image data, it is almost impossible to obtain the intraoperative 3D shape information by using physical methods such as sensor scanning, especially in minimally invasive surgery and robot-guided surgery. In this paper, a general generative adversarial network (GAN) architecture based on graph convolutional networks is proposed to reconstruct the 3D point clouds (PCs) of brains by using one single 2D image, thus relieving the limitation of acquiring 3D shape data during surgery. Specifically, a tree-structured generative mechanism is constructed to use the latent vector effectively and transfer features between hidden layers accurately. With the proposed generative model, a spontaneous image-to-PC conversion is finished in real-time. Competitive qualitative and quantitative experimental results have been achieved on our model. In multiple evaluation methods, the proposed model outperforms another common point cloud generative model PointOutNet.
Convolutional neural networks are the most successful models in single image super-resolution. Deeper networks, residual connections, and attention mechanisms have further improved their performance. However, these strategies often improve the reconstruction performance at the expense of considerably increasing the computational cost. This paper introduces a new lightweight super-resolution model based on an efficient method for residual feature and attention aggregation. In order to make an efficient use of the residual features, these are hierarchically aggregated into feature banks for posterior usage at the network output. In parallel, a lightweight hierarchical attention mechanism extracts the most relevant features from the network into attention banks for improving the final output and preventing the information loss through the successive operations inside the network. Therefore, the processing is split into two independent paths of computation that can be simultaneously carried out, resulting in a highly efficient and effective model for reconstructing fine details on high-resolution images from their low-resolution counterparts. Our proposed architecture surpasses state-of-the-art performance in several datasets, while maintaining relatively low computation and memory footprint.
162 - Xiang Chen , Yufeng Huang , Lei Xu 2021
Rain streaks bring serious blurring and visual quality degradation, which often vary in size, direction and density. Current CNN-based methods achieve encouraging performance, while are limited to depict rain characteristics and recover image details in the poor visibility environment. To address these issues, we present a Multi-scale Hourglass Hierarchical Fusion Network (MH2F-Net) in end-to-end manner, to exactly captures rain streak features with multi-scale extraction, hierarchical distillation and information aggregation. For better extracting the features, a novel Multi-scale Hourglass Extraction Block (MHEB) is proposed to get local and global features across different scales through down- and up-sample process. Besides, a Hierarchical Attentive Distillation Block (HADB) then employs the dual attention feature responses to adaptively recalibrate the hierarchical features and eliminate the redundant ones. Further, we introduce a Residual Projected Feature Fusion (RPFF) strategy to progressively discriminate feature learning and aggregate different features instead of directly concatenating or adding. Extensive experiments on both synthetic and real rainy datasets demonstrate the effectiveness of the designed MH2F-Net by comparing with recent state-of-the-art deraining algorithms. Our source code will be available on the GitHub: https://github.com/cxtalk/MH2F-Net.
Capturing visual image with a hyperspectral camera has been successfully applied to many areas due to its narrow-band imaging technology. Hyperspectral reconstruction from RGB images denotes a reverse process of hyperspectral imaging by discovering an inverse response function. Current works mainly map RGB images directly to corresponding spectrum but do not consider context information explicitly. Moreover, the use of encoder-decoder pair in current algorithms leads to loss of information. To address these problems, we propose a 4-level Hierarchical Regression Network (HRNet) with PixelShuffle layer as inter-level interaction. Furthermore, we adopt a residual dense block to remove artifacts of real world RGB images and a residual global block to build attention mechanism for enlarging perceptive field. We evaluate proposed HRNet with other architectures and techniques by participating in NTIRE 2020 Challenge on Spectral Reconstruction from RGB Images. The HRNet is the winning method of track 2 - real world images and ranks 3rd on track 1 - clean images. Please visit the project web page https://github.com/zhaoyuzhi/Hierarchical-Regression-Network-for-Spectral-Reconstruction-from-RGB-Images to try our codes and pre-trained models.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا