No Arabic abstract
The Hankel matrix of type B Narayana polynomials was proved to be totally positive by Wang and Zhu, and independently by Sokal. Pan and Zeng raised the problem of giving a planar network proof of this result. In this paper, we present such a proof by constructing a planar network allowing negative weights, applying the Lindstrom-Gessel-Viennot lemma and establishing an involution on the set of nonintersecting families of directed paths.
The object of this paper is to give a systematic treatment of excedance-type polynomials. We first give a sufficient condition for a sequence of polynomials to have alternatingly increasing property, and then we present a systematic study of the joint distribution of excedances, fixed points and cycles of permutations and derangements, signed or not, colored or not. Let $pin [0,1]$ and $qin [0,1]$ be two given real numbers. We prove that the cyc q-Eulerian polynomials of permutations are bi-gamma-positive, and the fix and cyc (p,q)-Eulerian polynomials of permutations are alternatingly increasing, and so they are unimodal with modes in the middle, where fix and cyc are the fixed point and cycle statistics. When p=1 and q=1/2, we find a combinatorial interpretation of the bi-gamma-coefficients of the (p,q)-Eulerian polynomials. We then study excedance and flag excedance statistics of signed permutations and colored permutations. In particular, we establish the relationships between the (p,q)-Eulerian polynomials and some multivariate Eulerian polynomials. Our results unify and generalize a variety of recent results.
In the study of Kostka numbers and Catalan numbers, Kirillov posed a unimodality conjecture for the rectangular Narayana polynomials. We prove that the rectangular Narayana polynomials have only real zeros, and thereby confirm Kirillovs unimodality conjecture with the help of Newtons inequality. By using an equidistribution property between descent numbers and ascent numbers on ballot paths due to Sulanke and a bijection between lattice words and standard Young tableaux, we show that the rectangular Narayana polynomial is equal to the descent generating function on standard Young tableaux of certain rectangular shape, up to a power of the indeterminate. Then we obtain the real-rootedness of the rectangular Narayana polynomial based on Brentis result that the descent generating function of standard Young tableaux has only real zeros.
In this paper, we prove the real-rootedness of two classes of generalized Narayana polynomials: one arising as the $h$-polynomials of the generalized associahedron associated to the finite Weyl groups, the other arising in the study of the infinite log-concavity of the Boros-Moll polynomials. For the former, Br{a}nd{e}n has already proved that these $h$-polynomials have only real zeros. We establish certain recurrence relations for the two classes of Narayana polynomials, from which we derive the real-rootedness. To prove the real-rootedness, we use a sufficient condition, due to Liu and Wang, to determine whether two polynomials have interlaced zeros. The recurrence relations are verified with the help of the Mathematica package textit{HolonomicFunctions}.
We first establish the result that the Narayana polynomials can be represented as the integrals of the Legendre polynomials. Then we represent the Catalan numbers in terms of the Narayana polynomials by three different identities. We give three different proofs for these identities, namely, two algebraic proofs and one combinatorial proof. Some applications are also given which lead to many known and new identities.
The generalized Narayana polynomials $N_{n,m}(x)$ arose from the study of infinite log-concavity of the Boros-Moll polynomials. The real-rootedness of $N_{n,m}(x)$ had been proved by Chen, Yang and Zhang. They also showed that when $ngeq m+2$, each of the generalized Narayana polynomials has one and only one positive zero and $m$ negative zeros, where the negative zeros of $N_{n,m}(x)$ and $N_{n+1,m+1}(x)$ have interlacing relations. In this paper, we study the properties of the positive zeros of $N_{n,m}(x)$ for $ngeq m+2$. We first obtain a new recurrence relation for the generalized Narayana polynomials. Based on this recurrence relation, we prove upper and lower bounds for the positive zeros of $N_{n,m}(x)$. Moreover, the monotonicity of the positive zeros of $N_{n,m}(x)$ are also proved by using the new recurrence relation.