Do you want to publish a course? Click here

The Real-rootedness of Generalized Narayana Polynomials

146   0   0.0 ( 0 )
 Added by Herman Z.Q. Chen
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

In this paper, we prove the real-rootedness of two classes of generalized Narayana polynomials: one arising as the $h$-polynomials of the generalized associahedron associated to the finite Weyl groups, the other arising in the study of the infinite log-concavity of the Boros-Moll polynomials. For the former, Br{a}nd{e}n has already proved that these $h$-polynomials have only real zeros. We establish certain recurrence relations for the two classes of Narayana polynomials, from which we derive the real-rootedness. To prove the real-rootedness, we use a sufficient condition, due to Liu and Wang, to determine whether two polynomials have interlaced zeros. The recurrence relations are verified with the help of the Mathematica package textit{HolonomicFunctions}.



rate research

Read More

The binomial Eulerian polynomials, introduced by Postnikov, Reiner, and Williams, are $gamma$-positive polynomials and can be interpreted as $h$-polynomials of certain flag simplicial polytopes. Recently, Athanasiadis studied analogs of these polynomials for colored permutations. In this paper, we generalize them to $mathbf{s}$-inversion sequences and prove that these new polynomials have only real roots by the method of interlacing polynomials. Three applications of this result are presented. The first one is to prove the real-rootedness of binomial Eulerian polynomials, which confirms a conjecture of Ma, Ma, and Yeh. The second one is to prove that the symmetric decomposition of binomial Eulerian polynomials for colored permutations is real-rooted. Thirdly, our polynomials for certain $mathbf{s}$-inversion sequences are shown to admit a similar geometric interpretation related to edgewise subdivisions of simplexes.
87 - James J.Y. Zhao 2021
The generalized Narayana polynomials $N_{n,m}(x)$ arose from the study of infinite log-concavity of the Boros-Moll polynomials. The real-rootedness of $N_{n,m}(x)$ had been proved by Chen, Yang and Zhang. They also showed that when $ngeq m+2$, each of the generalized Narayana polynomials has one and only one positive zero and $m$ negative zeros, where the negative zeros of $N_{n,m}(x)$ and $N_{n+1,m+1}(x)$ have interlacing relations. In this paper, we study the properties of the positive zeros of $N_{n,m}(x)$ for $ngeq m+2$. We first obtain a new recurrence relation for the generalized Narayana polynomials. Based on this recurrence relation, we prove upper and lower bounds for the positive zeros of $N_{n,m}(x)$. Moreover, the monotonicity of the positive zeros of $N_{n,m}(x)$ are also proved by using the new recurrence relation.
95 - Philip B. Zhang 2016
Athanasiadis conjectured that, for every positive integer $r$, the local $h$-polynomial of the $r$th edgewise subdivision of any simplex has only real zeros. In this paper, based on the theory of interlacing polynomials, we prove that a family of polynomials related to the desired local $h$-polynomial is interlacing and hence confirm Athanasiadis conjecture.
It is well-known that the coordinator polynomials of the classical root lattice of type $A_n$ and those of type $C_n$ are real-rooted. They can be obtained, either by the Aissen-Schoenberg-Whitney theorem, or from their recurrence relations. In this paper, we develop a trigonometric substitution approach which can be used to establish the real-rootedness of coordinator polynomials of type $D_n$. We also find the coordinator polynomials of type $B_n$ are not real-rooted in general. As a conclusion, we obtain that all coordinator polynomials of Weyl group lattices are log-concave.
In the study of Kostka numbers and Catalan numbers, Kirillov posed a unimodality conjecture for the rectangular Narayana polynomials. We prove that the rectangular Narayana polynomials have only real zeros, and thereby confirm Kirillovs unimodality conjecture with the help of Newtons inequality. By using an equidistribution property between descent numbers and ascent numbers on ballot paths due to Sulanke and a bijection between lattice words and standard Young tableaux, we show that the rectangular Narayana polynomial is equal to the descent generating function on standard Young tableaux of certain rectangular shape, up to a power of the indeterminate. Then we obtain the real-rootedness of the rectangular Narayana polynomial based on Brentis result that the descent generating function of standard Young tableaux has only real zeros.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا