Do you want to publish a course? Click here

Steady-state phases of dissipative spin-1/2 XYZ model with frustrated interaction

179   0   0.0 ( 0 )
 Added by Jiasen Jin
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the steady-state phases of the dissipative spin-1/2 $J_1$-$J_2$ XYZ model on a two-dimensional square lattice. We show the next-nearest-neighboring interaction plays a crucial role in determining the steady-state properties. By means of the Gutzwiller mean-field factorization, we find the emergence of antiferromag-netic steady-state phases. The existence of such antiferromagnetic steady-state phases in thermodynamic limit is confirmed by the cluster mean-field analysis. Moreover, we find the evidence of the limit cycle phase through the largest quantum Lyapunov exponent in small cluster, and check the stability of the oscillation by calculating the averaged oscillation amplitude up to $4times4$ cluster mean-field approximation.



rate research

Read More

204 - Xingli Li , Jiasen Jin 2020
We investigate the steady-state phase diagram of the dissipative spin-1/2 XYZ model on a two-dimensional triangular lattice, in which each site is coupled to a local environment. By means of cluster mean-field approximation, we find that the steady-state phases of the system are rather rich, in particular there exist various types of nonuniform antiferromagnetic phases due to the geometrical frustration. As the short-range correlations included in the analysis, the numerical results show that the oscillatory phase disappears while the triantiferromagnetic and biantiferromagnetic phases remain to exist in the thermodynamic limit. Moreover, the existence of the spin-density-wave phase, which is missed by the single-site mean-field analysis, is also revealed by the spin-structure factor.
We show that short-range correlations have a dramatic impact on the steady-state phase diagram of quantum driven-dissipative systems. This effect, never observed in equilibrium, follows from the fact that ordering in the steady state is of dynamical origin, and is established only at very long times, whereas in thermodynamic equilibrium it arises from the properties of the (free) energy. To this end, by combining the cluster methods extensively used in equilibrium phase transitions to quantum trajectories and tensor-network techniques, we extend them to nonequilibrium phase transitions in dissipative many-body systems. We analyze in detail a model of spin-1=2 on a lattice interacting through an XYZ Hamiltonian, each of them coupled to an independent environment that induces incoherent spin flips. In the steady-state phase diagram derived from our cluster approach, the location of the phase boundaries and even its topology radically change, introducing reentrance of the paramagnetic phase as compared to the single-site mean field where correlations are neglected. Furthermore, a stability analysis of the cluster mean field indicates a susceptibility towards a possible incommensurate ordering, not present if short-range correlations are ignored.
We study periodically driven bosonic scalar field theories in the infinite N limit. It is well-known that the free theory can undergo parametric resonance under monochromatic modulation of the mass term and thereby absorb energy indefinitely. Interactions in the infinite N limit terminate this increase for any choice of the UV cutoff and driving frequency. The steady state has non-trivial correlations and is synchronized with the drive. The O(N) model at infinite N provides the first example of a clean interacting quantum system that does not heat to infinite temperature at any drive frequency.
The quantum phases of 2-leg spin-1/2 ladders with skewed rungs are obtained using exact diagonalization of systems with up to 26 spins and by density matrix renormalization group calculations to 500 spins. The ladders have isotropic antiferromagnetic (AF) exchange $J_2 > 0$ between first neighbors in the legs, variable isotropic AF exchange $J_1$ between some first neighbors in different legs, and an unpaired spin per odd-membered ring when $J_1 gg J_2$. Ladders with skewed rungs and variable $J_1$ have frustrated AF interactions leading to multiple quantum phases: AF at small $J_1$, either F or AF at large $J_1$, as well as bond-order-wave phases or reentrant AF (singlet) phases at intermediate $J_1$.
We investigate the magnetic properties of spin-$1/2$ charged Fermi gases with ferromagnetic coupling via mean-field theory, and find the interplay among the paramagnetism, diamagnetism and ferromagnetism. Paramagnetism and diamagnetism compete with each other. When increasing the ferromagnetic coupling the spontaneous magnetization occurs in a weak magnetic field. The critical ferromagnetic coupling constant of the paramagnetic phase to ferromagnetic phase transition increases linearly with the temperature. Both the paramagnetism and diamagnetism increase when the magnetic field increases. It reveals the magnetization density $bar M$ increases firstly as the temperature increases, and then reaches a maximum. Finally the magnetization density $bar M$ decreases smoothly in the high temperature region. The domed shape of the magnetization density $bar M$ variation is different from the behavior of Bose gas with ferromagnetic coupling. We also find the curve of susceptibility follows the Curie-Weiss law, and for a given temperature the susceptibility is directly proportional to the Land{e} factor.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا