Do you want to publish a course? Click here

Ready for Emerging Threats to Recommender Systems? A Graph Convolution-based Generative Shilling Attack

248   0   0.0 ( 0 )
 Added by Hao Li
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

To explore the robustness of recommender systems, researchers have proposed various shilling attack models and analyzed their adverse effects. Primitive attacks are highly feasible but less effective due to simplistic handcrafted rules, while upgraded attacks are more powerful but costly and difficult to deploy because they require more knowledge from recommendations. In this paper, we explore a novel shilling attack called Graph cOnvolution-based generative shilling ATtack (GOAT) to balance the attacks feasibility and effectiveness. GOAT adopts the primitive attacks paradigm that assigns items for fake users by sampling and the upgraded attacks paradigm that generates fake ratings by a deep learning-based model. It deploys a generative adversarial network (GAN) that learns the real rating distribution to generate fake ratings. Additionally, the generator combines a tailored graph convolution structure that leverages the correlations between co-rated items to smoothen the fake ratings and enhance their authenticity. The extensive experiments on two public datasets evaluate GOATs performance from multiple perspectives. Our study of the GOAT demonstrates technical feasibility for building a more powerful and intelligent attack model with a much-reduced cost, enables analysis the threat of such an attack and guides for investigating necessary prevention measures.



rate research

Read More

Real-world recommender system needs to be regularly retrained to keep with the new data. In this work, we consider how to efficiently retrain graph convolution network (GCN) based recommender models, which are state-of-the-art techniques for collaborative recommendation. To pursue high efficiency, we set the target as using only new data for model updating, meanwhile not sacrificing the recommendation accuracy compared with full model retraining. This is non-trivial to achieve, since the interaction data participates in both the graph structure for model construction and the loss function for model learning, whereas the old graph structure is not allowed to use in model updating. Towards the goal, we propose a textit{Causal Incremental Graph Convolution} approach, which consists of two new operators named textit{Incremental Graph Convolution} (IGC) and textit{Colliding Effect Distillation} (CED) to estimate the output of full graph convolution. In particular, we devise simple and effective modules for IGC to ingeniously combine the old representations and the incremental graph and effectively fuse the long-term and short-term preference signals. CED aims to avoid the out-of-date issue of inactive nodes that are not in the incremental graph, which connects the new data with inactive nodes through causal inference. In particular, CED estimates the causal effect of new data on the representation of inactive nodes through the control of their collider. Extensive experiments on three real-world datasets demonstrate both accuracy gains and significant speed-ups over the existing retraining mechanism.
Conversational recommender systems (CRS) aim to recommend high-quality items to users through interactive conversations. Although several efforts have been made for CRS, two major issues still remain to be solved. First, the conversation data itself lacks of sufficient contextual information for accurately understanding users preference. Second, there is a semantic gap between natural language expression and item-level user preference. To address these issues, we incorporate both word-oriented and entity-oriented knowledge graphs (KG) to enhance the data representations in CRSs, and adopt Mutual Information Maximization to align the word-level and entity-level semantic spaces. Based on the aligned semantic representations, we further develop a KG-enhanced recommender component for making accurate recommendations, and a KG-enhanced dialog component that can generate informative keywords or entities in the response text. Extensive experiments have demonstrated the effectiveness of our approach in yielding better performance on both recommendation and conversation tasks.
Graph-structured data exist in numerous applications in real life. As a state-of-the-art graph neural network, the graph convolutional network (GCN) plays an important role in processing graph-structured data. However, a recent study reported that GCNs are also vulnerable to adversarial attacks, which means that GCN models may suffer malicious attacks with unnoticeable modifications of the data. Among all the adversarial attacks on GCNs, there is a special kind of attack method called the universal adversarial attack, which generates a perturbation that can be applied to any sample and causes GCN models to output incorrect results. Although universal adversarial attacks in computer vision have been extensively researched, there are few research works on universal adversarial attacks on graph structured data. In this paper, we propose a targeted universal adversarial attack against GCNs. Our method employs a few nodes as the attack nodes. The attack capability of the attack nodes is enhanced through a small number of fake nodes connected to them. During an attack, any victim node will be misclassified by the GCN as the attack node class as long as it is linked to them. The experiments on three popular datasets show that the average attack success rate of the proposed attack on any victim node in the graph reaches 83% when using only 3 attack nodes and 6 fake nodes. We hope that our work will make the community aware of the threat of this type of attack and raise the attention given to its future defense.
373 - Shoujin Wang , Liang Hu , Yan Wang 2021
Recent years have witnessed the fast development of the emerging topic of Graph Learning based Recommender Systems (GLRS). GLRS employ advanced graph learning approaches to model users preferences and intentions as well as items characteristics for recommendations. Differently from other RS approaches, including content-based filtering and collaborative filtering, GLRS are built on graphs where the important objects, e.g., users, items, and attributes, are either explicitly or implicitly connected. With the rapid development of graph learning techniques, exploring and exploiting homogeneous or heterogeneous relations in graphs are a promising direction for building more effective RS. In this paper, we provide a systematic review of GLRS, by discussing how they extract important knowledge from graph-based representations to improve the accuracy, reliability and explainability of the recommendations. First, we characterize and formalize GLRS, and then summarize and categorize the key challenges and main progress in this novel research area. Finally, we share some new research directions in this vibrant area.
Deep neural networks have recently achieved tremendous success in image classification. Recent studies have however shown that they are easily misled into incorrect classification decisions by adversarial examples. Adversaries can even craft attacks by querying the model in black-box settings, where no information about the model is released except its final decision. Such decision-based attacks usually require lots of queries, while real-world image recognition systems might actually restrict the number of queries. In this paper, we propose qFool, a novel decision-based attack algorithm that can generate adversarial examples using a small number of queries. The qFool method can drastically reduce the number of queries compared to previous decision-based attacks while reaching the same quality of adversarial examples. We also enhance our method by constraining adversarial perturbations in low-frequency subspace, which can make qFool even more computationally efficient. Altogether, we manage to fool commercial image recognition systems with a small number of queries, which demonstrates the actual effectiveness of our new algorithm in practice.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا