Do you want to publish a course? Click here

Long-term Spectroscopic Survey of the Pleiades Cluster: The Binary Population

88   0   0.0 ( 0 )
 Added by Guillermo Torres
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the results of a spectroscopic monitoring program of the Pleiades region aimed at completing the census of spectroscopic binaries in the cluster, extending it to longer periods than previously reachable. We gathered 6104 spectra of 377 stars between 1981 and 2021, and merged our radial velocities with 1151 measurements from an independent survey by others started three years earlier. With the combined data spanning more than 43 yr we have determined orbits for some 30 new binary and multiple systems, more than doubling the number previously known in the Pleiades. The longest period is 36.5 yr. A dozen additional objects display long-term trends in their velocities, implying even longer periods. We examine the collection of orbital elements for cluster members, and find that the shape of the incompleteness-corrected distribution of periods (up to $10^4$ days) is similar to that of solar-type binaries in the field, while that of the eccentricities is different. The mass-ratio distribution is consistent with being flat. The binary frequency in the Pleiades for periods up to $10^4$ days is $25 pm 3$%, after corrections for undetected binaries, which is nearly double that of the field up to the same period. The total binary frequency including known astrometric binaries is at least 57%. We estimate the internal radial velocity dispersion in the cluster to be $0.48 pm 0.04$ km s$^{-1}$. We revisit the determination of the tidal circularization period, and confirm its value to be $7.2 pm 1.0$ days, with an improved precision compared to an earlier estimate.



rate research

Read More

We present the multi-color, five-year light curves and the first radial velocities of the near-contact binary system KR Cyg. We derived the masses of the components as 2.88$pm$0.20 M$_{odot}$ and 1.26$pm$0.07 M$_{odot}$ and the radii as 2.59$pm$0.06 R$_{odot}$ and 1.80$pm$0.04 R$_{odot}$. Analyses of the UBVR light curves and the radial velocities indicate that none of the components exactly fill their corresponding Roche lobes. We have calculated the distance to the system of KR Cyg as {411$pm$12} pc using the observed apparent UBV magnitudes and the bolometric corrections for the component stars. We also searched for the empirical determination of albedo and effective temperature of the cooler, less massive star of KR Cyg, and of two similar near contact binaries AK CMi, and DO Cas. The residuals between the observed and computed fluxes are attributed to the effect of mutual illumination which heats the surface layers of the illuminated star and does vary not only its bolometric albedo but also its limb-darkening coefficient and gravity-brightening exponent. The analysis of the light curves shows that the effective albedos are generally smaller than that expected from an envelope of convective star, being mostly departed from the theoretical value at the B passband. As the reflected light diminishes the effective temperature and, therefore, the luminosity of the irradiated star increase. The observed bluer U-B colors during primary minimum are attributed to the effects of mutual irradiation and multiple scattering processes which may alter several characteristics of these systems.
203 - Guillermo Torres 2020
Radial-velocities for the early-type stars in the Pleiades cluster have always been challenging to measure because of the significant rotational broadening of the spectral lines. The large scatter in published velocities has led to claims that many are spectroscopic binaries, and in several cases preliminary orbital solutions have been proposed. To investigate these claims, we obtained and report here velocity measurements for 33 rapidly-rotating B, A, and early F stars in the Pleiades region, improving significantly on the precision of the historical velocities for most objects. With one or two exceptions, we do not confirm any of the previous claims of variability, and we also rule out all four of the previously published orbital solutions, for HD 22637, HD 23302, HD 23338, and HD 23410. We do find HD 22637 to be a binary, but with a different period (71.8 days). HD 23338 is likely a binary as well, with a preliminary 8.7 yr period also different from the one published. Additionally, we report a 3635 day orbit for HD 24899, another new spectroscopic binary in the cluster. From the 32 bona fide members in our sample we determine a mean radial velocity for the Pleiades of 5.79 +/- 0.24 km/s, or 5.52 +/- 0.31 km/s when objects with known visual companions are excluded. Adding these astrometric binaries to the new spectroscopic ones, we find a lower limit to the binary fraction among the B and A stars of 37%. In addition to the velocities, we measure v sin i for all stars, ranging between 69 and 317 km/s.
We present and analyse 120 spectroscopic binary and triple cluster members of the old (4 Gyr) open cluster M67 (NGC 2682). As a cornerstone of stellar astrophysics, M67 is a key cluster in the WIYN Open Cluster Study (WOCS); radial-velocity (RV) observations of M67 are ongoing and extend back over 45 years, incorporating data from seven different telescopes, and allowing us to detect binaries with orbital periods <~10^4 days. Our sample contains 1296 stars (604 cluster members) with magnitudes of 10 <= V <= 16.5 (about 1.3 to 0.7 Msolar), from the giants down to ~4 mag below the main-sequence turnoff, and extends in radius to 30 arcminutes (7.4 pc at a distance of 850 pc, or ~7 core radii). This paper focuses primarily on the main-sequence binaries, but orbital solutions are also presented for red giants, yellow giants and sub-subgiants. Out to our period detection limit and within our magnitude and spatial domain, we find a global main-sequence incompleteness-corrected binary fraction of 34% +/- 3%, which rises to 70% +/- 17% in the cluster center. We derive a tidal circularization period of P_circ = 11.0 +1.1 -1.0 days. We also analyze the incompleteness-corrected distributions of binary orbital elements and masses. The period distribution rises toward longer periods. The eccentricity distribution, beyond P_circ, is consistent with a uniform distribution. The mass-ratio distribution is also consistent with a uniform distribution. Overall, these M67 binaries are closely consistent with similar binaries in the galactic field, as well as the old (7 Gyr) open cluster NGC 188. WIYN Open Cluster Study. 83.
295 - A. Lobel 2010
We present results of a long-term spectroscopic monitoring program (since mid 2009) of Luminous Blue Variables with the new HERMES echelle spectrograph on the 1.2 m Mercator telescope at La Palma (Spain). We investigate high-resolution (R=80,000) optical spectra of two LBVs, P Cyg and HD 168607, the LBV candidates MWC 930 and HD 168625, and the LBV binary MWC 314. In P Cyg we observe flux changes in the violet wings of the Balmer H{alpha}, H{beta}, and He I lines between May and Sep 2009. The changes around 200 km/s to 300 km/s are caused by variable opacity at the base of the supersonic wind from the blue supergiant. We observe in MWC 314 broad double-peaked metal emission lines with invariable radial velocities over time. On the other hand, we measure in the photospheric S II {lambda}5647 absorption line, with lower excitation energy of ~14 eV, an increase of the heliocentric radial velocity centroid from 37 km/s to 70 km/s between 5 and 10 Sep 2009 (and 43 km/s on 6 Apr 2010). The increase of radial velocity of ~33 km/s in only 5 days can confirm the binary nature of this LBV close to the Eddington luminosity limit. A comparison with VLT-UVES and Keck-Hires spectra observed over the past 13 years reveals strong flux variability in the violet wing of the H{alpha} emission line of HD 168625, and in the absorption portion of the H{beta} line of HD 168607. In HD 168625 we observe H{alpha} wind absorption at velocities exceeding 200 km/s which develops between Apr and June 2010.
In 2015 a radial velocity monitoring campaign was started in order to redetermine and/or constrain the orbital solutions of spectroscopic binary systems. The observations were carried out at the University Observatory Jena with the Echelle spectrograph FLECHAS. The results from the main part of our target sample are already published. For the final target of this campaign, $theta$ Cep, we can now present an orbital solution based on a homogeneously covered radial velocity curve. The period of this single-lined spectroscopic binary turns out to be significantly larger and the orbit is much more eccentric compared to the given values in the 9th Catalogue of Spectroscopic Binary Orbits.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا