No Arabic abstract
In the peer selection problem a group of agents must select a subset of themselves as winners for, e.g., peer-reviewed grants or prizes. Here, we take a Condorcet view of this aggregation problem, i.e., that there is a ground-truth ordering over the agents and we wish to select the best set of agents, subject to the noisy assessments of the peers. Given this model, some agents may be unreliable, while others might be self-interested, attempting to influence the outcome in their favour. In this paper we extend PeerNomination, the most accurate peer reviewing algorithm to date, into WeightedPeerNomination, which is able to handle noisy and inaccurate agents. To do this, we explicitly formulate assessors reliability weights in a way that does not violate strategyproofness, and use this information to reweight their scores. We show analytically that a weighting scheme can improve the overall accuracy of the selection significantly. Finally, we implement several instances of reweighting methods and show empirically that our methods are robust in the face of noisy assessments.
We consider the problem of committee selection from a fixed set of candidates where each candidate has multiple quantifiable attributes. To select the best possible committee, instead of voting for a candidate, a voter is allowed to approve the preferred attributes of a given candidate. Though attribute based preference is addressed in several contexts, committee selection problem with attribute approval of voters has not been attempted earlier. A committee formed on attribute preferences is more likely to be a better representative of the qualities desired by the voters and is less likely to be susceptible to collusion or manipulation. In this work, we provide a formal study of the different aspects of this problem and define properties of weak unanimity, strong unanimity, simple justified representations and compound justified representation, that are required to be satisfied by the selected committee. We show that none of the existing vote/approval aggregation rules satisfy these new properties for attribute aggregation. We describe a greedy approach for attribute aggregation that satisfies the first three properties, but not the fourth, i.e., compound justified representation, which we prove to be NP-complete. Furthermore, we prove that finding a committee with justified representation and the highest approval voting score is NP-complete.
We study social choice mechanisms in an implicit utilitarian framework with a metric constraint, where the goal is to minimize textit{Distortion}, the worst case social cost of an ordinal mechanism relative to underlying cardinal utilities. We consider two additional desiderata: Constant sample complexity and Squared Distortion. Constant sample complexity means that the mechanism (potentially randomized) only uses a constant number of ordinal queries regardless of the number of voters and alternatives. Squared Distortion is a measure of variance of the Distortion of a randomized mechanism. Our primary contribution is the first social choice mechanism with constant sample complexity textit{and} constant Squared Distortion (which also implies constant Distortion). We call the mechanism Random Referee, because it uses a random agent to compare two alternatives that are the favorites of two other random agents. We prove that the use of a comparison query is necessary: no mechanism that only elicits the top-k preferred alternatives of voters (for constant k) can have Squared Distortion that is sublinear in the number of alternatives. We also prove that unlike any top-k only mechanism, the Distortion of Random Referee meaningfully improves on benign metric spaces, using the Euclidean plane as a canonical example. Finally, among top-1 only mechanisms, we introduce Random Oligarchy. The mechanism asks just 3 queries and is essentially optimal among the class of such mechanisms with respect to Distortion. In summary, we demonstrate the surprising power of constant sample complexity mechanisms generally, and just three random voters in particular, to provide some of the best known results in the implicit utilitarian framework.
We propose measurement integrity, a property related to ex post reward fairness, as a novel desideratum for peer prediction mechanisms in many applications, including peer assessment. We operationalize this notion to evaluate the measurement integrity of different mechanisms in computational experiments. Our evaluations simulate the application of peer prediction mechanisms to peer assessment---a setting in which realistic models have been validated on real data and in which ex post fairness concerns are quite salient. We find that peer prediction mechanisms, as proposed in the literature, largely fail to demonstrate measurement integrity in our experiments. However, we also find that certain mechanisms can be supplemented with realistic parametric statistical models to improve their measurement integrity. In the same setting, we also evaluate an empirical notion of robustness against strategic behavior to complement the theoretical analyses of robustness against strategic behavior that have been the main focus of the peer prediction literature. In this dimension of analysis, we again find that supplementing certain mechanisms with parametric statistical models can improve their empirical performance. Even so, though, we find that theoretical guarantees of robustness against strategic behavior are somewhat noisy predictors of empirical robustness. As a whole, our empirical methodology for quantifying desirable mechanism properties facilitates a more nuanced comparison between mechanisms than theoretical analysis alone. Ultimately, we find there is a trade-off between our two dimensions of analysis. The best performing mechanisms for measurement integrity are highly susceptible to strategic behavior. On the other hand, certain parametric peer prediction mechanisms are robust against all the strategic manipulations we consider while still achieving reasonable measurement integrity.
In the setting where we ask participants multiple similar possibly subjective multi-choice questions (e.g. Do you like Bulbasaur? Y/N; do you like Squirtle? Y/N), peer prediction aims to design mechanisms that encourage honest feedback without verification. A series of works have successfully designed multi-task peer prediction mechanisms where reporting truthfully is better than any other strategy (dominantly truthful), while they require an infinite number of tasks. A recent work proposes the first multi-task peer prediction mechanism, Determinant Mutual Information (DMI)-Mechanism, where not only is dominantly truthful but also works for a finite number of tasks (practical). However, few works consider how to optimize the multi-task peer prediction mechanisms. In addition to the definition of optimization goal, the biggest challenge is we do not have space for optimization since there is only a single practical and dominantly truthful mechanism. This work addresses this problem by proposing a tractable effort incentive optimization goal and generalizing DMI-Mechanism to a new family of practical, dominantly truthful mechanisms, Volume Mutual Information (VMI)-Mechanisms. We show that DMI-Mechanism may not be optimal. But we can construct a sequence of VMI-Mechanisms that are approximately optimal. The main technical tool is a novel family of mutual information measures, Volume Mutual Information, which generalizes Determinant Mutual Information. We construct VMI by a simple geometric idea: we measure how informative a distribution is by measuring the volume of distributions that is less informative than it (inappropriately, its similar to measuring how clever a person is by counting the number of people that are less clever than he/she).
This paper designs a market platform for Peer-to-Peer (P2P) energy trading in Transactive Energy (TE) systems, where prosumers and consumers actively participate in the market as seller or buyer to trade energy. An auction-based approach is used for market clearing in the proposed platform and a review of different types of auction is performed. The appropriate auction approach for market clearing in the proposed platform is designed. The proposed auction mechanism is implemented in three steps namely determination, allocation and payment. This paper identifies important P2P market clearing performance indices, which are used to compare and contrast the designed auction with different types of auction mechanisms. Comparative studies demonstrate the efficacy of the proposed auction mechanism for market clearing in the P2P platform.