Do you want to publish a course? Click here

Femtojoule, femtosecond all-optical switching in lithium niobate nanophotonics

251   0   0.0 ( 0 )
 Added by Qiushi Guo
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Optical nonlinear functions are crucial for various applications in integrated photonics, such as all-optical information processing, photonic neural networks and on-chip ultrafast light sources. Due to the weak nonlinearities in most integrated photonic platforms, realizing optical nonlinear functions typically requires large driving energies in the picojoules level or beyond, thus imposing a barrier for most applications. Here, we tackle this challenge and demonstrate an integrated nonlinear splitter device in lithium niobate nano-waveguides by simultaneous engineering of the dispersion and quasi-phase matching. We achieve non-resonant all-optical switching with ultra-low energies down to tens of femtojoules, a near instantaneous switching time of 18 fs, and a large extinction ratio of more than 5 dB. Our nonlinear splitter simultaneously realizes switch-on and -off operations and features a state-of-the-art switching energy-time product as low as $1.4 times10^{-27}$ J$cdot$s. We also show a path toward attojoule level all-optical switching by further optimizing the device geometry. Our results can enable on-chip ultrafast and energy-efficient all-optical information processing, computing systems, and light sources.



rate research

Read More

166 - Bofeng Gao , Mengxin Ren , Wei Wu 2018
Lithium niobate is a multi-functional material, which has been regarded as one of the most promising platform for the multi-purpose optical components and photonic circuits. Targeting at the miniature optical components and systems, lithium niobate microstructures with feature sizes of several to hundreds of micrometers have been demonstrated, such as waveguides, photonic crystals, micro-cavities, and modulators, et al. In this paper, we presented subwavelength nanograting metasurfaces fabricated in a crystalline lithium niobate film, which hold the possibilities towards further shrinking the footprint of the photonic devices with new optical functionalities. Due to the collective lattice interactions between isolated ridge resonances, distinct transmission spectral resonances were observed, which could be tunable by varying the structural parameters. Furthermore, our metasurfaces are capable to show high efficiency transmission structural colors as a result of structural resonances and intrinsic high transparency of lithium niobate in visible spectral range. Our results would pave the way for the new types of ultracompact photonic devices based on lithium niobate.
All-optical switching of 77 fs pulses centered at 1560 nm, driven by 270 fs, 1030 nm pulses in a dual-core optical fiber exhibiting high index contrast is presented. The fiber is made of a thermally matched pair of lead silicate and borosilicate glasses used as core and cladding material, respectively. The novel switching approach is based on nonlinear balancing of dual-core asymmetry, by control pulse intensity induced group velocity reduction of the fast fiber channel. Due to the fiber core made of soft glass with high nonlinearity high switching contrast exceeding 20 dB is attained under application of control pulses of only few nanojoule energy. The optimization of the fiber length brought the best results at 14 mm, which is in good correspondence with the calculated coupling length at the signal wavelength. The results express significant progress in comparison to similar studies based on self-switching of solitonic pulses in dual-core fibers and represent high application potential.
Materials with strong $chi^{(2)}$ optical nonlinearity, especially lithium niobate, play a critical role in building optical parametric oscillators (OPOs). However, chip-scale integration of low-loss $chi^{(2)}$ materials remains challenging and limits the threshold power of on-chip $chi^{(2)}$ OPO. Here we report the first on-chip lithium niobate optical parametric oscillator at the telecom wavelengths using a quasi-phase matched, high-quality microring resonator, whose threshold power ($sim$30 $mu$W) is 400 times lower than that in previous $chi^{(2)}$ integrated photonics platforms. An on-chip power conversion efficiency of 11% is obtained at a pump power of 93 $mu$W. The OPO wavelength tuning is achieved by varying the pump frequency and chip temperature. With the lowest power threshold among all on-chip OPOs demonstrated so far, as well as advantages including high conversion efficiency, flexibility in quasi-phase matching and device scalability, the thin-film lithium niobate OPO opens new opportunities for chip-based tunable classical and quantum light sources and provides an potential platform for realizing photonic neural networks.
Strong amplification in integrated photonics is one of the most desired optical functionalities for computing, communications, sensing, and quantum information processing. Semiconductor gain and cubic nonlinearities, such as four-wave mixing and stimulated Raman and Brillouin scattering, have been among the most studied amplification mechanisms on chip. Alternatively, material platforms with strong quadratic nonlinearities promise numerous advantages with respect to gain and bandwidth, among which nanophotonic lithium niobate is one of the most promising candidates. Here, we combine quasi-phase matching with dispersion engineering in nanophotonic lithium niobate waveguides and achieve intense optical parametric amplification. We measure a broadband phase-sensitive amplification larger than 45 dB/cm in a 2.5-mm-long waveguide. We further confirm high gain operation in the degenerate and non-degenerate regimes by amplifying vacuum fluctuations to macroscopic levels in a 6-mm-long waveguide, with gains exceeding 100 dB/cm over 600 nm of bandwidth around 2 $mu$m. Our results unlock new possibilities for on-chip few-cycle nonlinear optics, mid-infrared photonics, and quantum photonics.
105 - Yang Li , Zhijin Huang , Zhan Sui 2020
Second harmonic generation (SHG) with a material of large transparency is an attractive way of generating coherent light sources at exotic wavelength range such as VUV, UV and visible light. It is of critical importance to improve nonlinear conversion efficiency in order to find practical applications in quantum light source and high resolution nonlinear microscopy, etc. Here an enhanced SHG with conversion efficiency up to the order of 0.01% at SH wavelength of 282 nm under 11 GW/cm2 pump power via the excitation of anapole in lithium niobite (LiNbO3, or LN) nanodisk through the dominating d33 nonlinear coefficient is investigated. The anapole has advantages of strongly suppressing far-field scattering and well-confined internal field which helps to boost the nonlinear conversion. Anapoles in LN nanodisk is facilitated by high index contrast between LN and substrate with properties of near-zero-index via hyperbolic metamaterial structure design. By tailoring the multi-layers structure of hyperbolic metamaterials, the anapole excitation wavelength can be tuned at different wavelengths. It indicates that an enhanced SHG can be achieved at a wide range of pump light wavelengths via different design of the epsilon-near-zero (ENZ) hyperbolic metamaterials substrates. The proposed nanostructure in this work might hold significances for the enhanced light-matter interactions at the nanoscale such as integrated optics.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا