Do you want to publish a course? Click here

BoningKnife: Joint Entity Mention Detection and Typing for Nested NER via prior Boundary Knowledge

132   0   0.0 ( 0 )
 Added by Huiqiang Jiang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

While named entity recognition (NER) is a key task in natural language processing, most approaches only target flat entities, ignoring nested structures which are common in many scenarios. Most existing nested NER methods traverse all sub-sequences which is both expensive and inefficient, and also dont well consider boundary knowledge which is significant for nested entities. In this paper, we propose a joint entity mention detection and typing model via prior boundary knowledge (BoningKnife) to better handle nested NER extraction and recognition tasks. BoningKnife consists of two modules, MentionTagger and TypeClassifier. MentionTagger better leverages boundary knowledge beyond just entity start/end to improve the handling of nesting levels and longer spans, while generating high quality mention candidates. TypeClassifier utilizes a two-level attention mechanism to decouple different nested level representations and better distinguish entity types. We jointly train both modules sharing a common representation and a new dual-info attention layer, which leads to improved representation focus on entity-related information. Experiments over different datasets show that our approach outperforms previous state of the art methods and achieves 86.41, 85.46, and 94.2 F1 scores on ACE2004, ACE2005, and NNE, respectively.



rate research

Read More

Knowledge graph (KG) entity typing aims at inferring possible missing entity type instances in KG, which is a very significant but still under-explored subtask of knowledge graph completion. In this paper, we propose a novel approach for KG entity typing which is trained by jointly utilizing local typing knowledge from existing entity type assertions and global triple knowledge from KGs. Specifically, we present two distinct knowledge-driven effective mechanisms of entity type inference. Accordingly, we build two novel embedding models to realize the mechanisms. Afterward, a joint model with them is used to infer missing entity type instances, which favors inferences that agree with both entity type instances and triple knowledge in KGs. Experimental results on two real-world datasets (Freebase and YAGO) demonstrate the effectiveness of our proposed mechanisms and models for improving KG entity typing. The source code and data of this paper can be obtained from: https://github.com/ Adam1679/ConnectE
Knowledge graph entity typing aims to infer entities missing types in knowledge graphs which is an important but under-explored issue. This paper proposes a novel method for this task by utilizing entities contextual information. Specifically, we design two inference mechanisms: i) N2T: independently use each neighbor of an entity to infer its type; ii) Agg2T: aggregate the neighbors of an entity to infer its type. Those mechanisms will produce multiple inference results, and an exponentially weighted pooling method is used to generate the final inference result. Furthermore, we propose a novel loss function to alleviate the false-negative problem during training. Experiments on two real-world KGs demonstrate the effectiveness of our method. The source code and data of this paper can be obtained from https://github.com/CCIIPLab/CET.
Conventional entity typing approaches are based on independent classification paradigms, which make them difficult to recognize inter-dependent, long-tailed and fine-grained entity types. In this paper, we argue that the implicitly entailed extrinsic and intrinsic dependencies between labels can provide critical knowledge to tackle the above challenges. To this end, we propose emph{Label Reasoning Network(LRN)}, which sequentially reasons fine-grained entity labels by discovering and exploiting label dependencies knowledge entailed in the data. Specifically, LRN utilizes an auto-regressive network to conduct deductive reasoning and a bipartite attribute graph to conduct inductive reasoning between labels, which can effectively model, learn and reason complex label dependencies in a sequence-to-set, end-to-end manner. Experiments show that LRN achieves the state-of-the-art performance on standard ultra fine-grained entity typing benchmarks, and can also resolve the long tail label problem effectively.
Automated knowledge discovery from trending chemical literature is essential for more efficient biomedical research. How to extract detailed knowledge about chemical reactions from the core chemistry literature is a new emerging challenge that has not been well studied. In this paper, we study the new problem of fine-grained chemical entity typing, which poses interesting new challenges especially because of the complex name mentions frequently occurring in chemistry literature and graphic representation of entities. We introduce a new benchmark data set (CHEMET) to facilitate the study of the new task and propose a novel multi-modal representation learning framework to solve the problem of fine-grained chemical entity typing by leveraging external resources with chemical structures and using cross-modal attention to learn effective representation of text in the chemistry domain. Experiment results show that the proposed framework outperforms multiple state-of-the-art methods.
Although over 100 languages are supported by strong off-the-shelf machine translation systems, only a subset of them possess large annotated corpora for named entity recognition. Motivated by this fact, we leverage machine translation to improve annotation-projection approaches to cross-lingual named entity recognition. We propose a system that improves over prior entity-projection methods by: (a) leveraging machine translation systems twice: first for translating sentences and subsequently for translating entities; (b) matching entities based on orthographic and phonetic similarity; and (c) identifying matches based on distributional statistics derived from the dataset. Our approach improves upon current state-of-the-art methods for cross-lingual named entity recognition on 5 diverse languages by an average of 4.1 points. Further, our method achieves state-of-the-art F_1 scores for Armenian, outperforming even a monolingual model trained on Armenian source data.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا