Do you want to publish a course? Click here

A Real-time Speaker Diarization System Based on Spatial Spectrum

182   0   0.0 ( 0 )
 Added by Siqi Zheng
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

In this paper we describe a speaker diarization system that enables localization and identification of all speakers present in a conversation or meeting. We propose a novel systematic approach to tackle several long-standing challenges in speaker diarization tasks: (1) to segment and separate overlapping speech from two speakers; (2) to estimate the number of speakers when participants may enter or leave the conversation at any time; (3) to provide accurate speaker identification on short text-independent utterances; (4) to track down speakers movement during the conversation; (5) to detect speaker change incidence real-time. First, a differential directional microphone array-based approach is exploited to capture the target speakers voice in far-field adverse environment. Second, an online speaker-location joint clustering approach is proposed to keep track of speaker location. Third, an instant speaker number detector is developed to trigger the mechanism that separates overlapped speech. The results suggest that our system effectively incorporates spatial information and achieves significant gains.

rate research

Read More

We present an end-to-end deep network model that performs meeting diarization from single-channel audio recordings. End-to-end diarization models have the advantage of handling speaker overlap and enabling straightforward handling of discriminative training, unlike traditional clustering-based diarization methods. The proposed system is designed to handle meetings with unknown numbers of speakers, using variable-number permutation-invariant cross-entropy based loss functions. We introduce several components that appear to help with diarization performance, including a local convolutional network followed by a global self-attention module, multi-task transfer learning using a speaker identification component, and a sequential approach where the model is refined with a second stage. These are trained and validated on simulated meeting data based on LibriSpeech and LibriTTS datasets; final evaluations are done using LibriCSS, which consists of simulated meetings recorded using real acoustics via loudspeaker playback. The proposed model performs better than previously proposed end-to-end diarization models on these data.
94 - Keke Wang , Xudong Mao , Hao Wu 2021
This paper describes the ByteDance speaker diarization system for the fourth track of the VoxCeleb Speaker Recognition Challenge 2021 (VoxSRC-21). The VoxSRC-21 provides both the dev set and test set of VoxConverse for use in validation and a standalone test set for evaluation. We first collect the duration and signal-to-noise ratio (SNR) of all audio and find that the distribution of the VoxConverses test set and the VoxSRC-21s test set is more closer. Our system consists of voice active detection (VAD), speaker embedding extraction, spectral clustering followed by a re-clustering step based on agglomerative hierarchical clustering (AHC) and overlapped speech detection and handling. Finally, we integrate systems with different time scales using DOVER-Lap. Our best system achieves 5.15% of the diarization error rate (DER) on evaluation set, ranking the second at the diarization track of the challenge.
Peer-led team learning (PLTL) is a model for teaching STEM courses where small student groups meet periodically to collaboratively discuss coursework. Automatic analysis of PLTL sessions would help education researchers to get insight into how learning outcomes are impacted by individual participation, group behavior, team dynamics, etc.. Towards this, speech and language technology can help, and speaker diarization technology will lay the foundation for analysis. In this study, a new corpus is established called CRSS-PLTL, that contains speech data from 5 PLTL teams over a semester (10 sessions per team with 5-to-8 participants in each team). In CRSS-PLTL, every participant wears a LENA device (portable audio recorder) that provides multiple audio recordings of the event. Our proposed solution is unsupervised and contains a new online speaker change detection algorithm, termed G 3 algorithm in conjunction with Hausdorff-distance based clustering to provide improved detection accuracy. Additionally, we also exploit cross channel information to refine our diarization hypothesis. The proposed system provides good improvements in diarization error rate (DER) over the baseline LIUM system. We also present higher level analysis such as the number of conversational turns taken in a session, and speaking-time duration (participation) for each speaker.
Voice disorders affect a large portion of the population, especially heavy voice users such as teachers or call-center workers. Most voice disorders can be treated effectively with behavioral voice therapy, which teaches patients to replace problematic, habituated voice production mechanics with optimal voice production technique(s), yielding improved voice quality. However, treatment often fails because patients have difficulty differentiating their habitual voice from the target technique independently, when clinician feedback is unavailable between therapy sessions. Therefore, with the long term aim to extend clinician feedback to extra-clinical settings, we built two systems that automatically differentiate various voice qualities produced by the same individual. We hypothesized that 1) a system based on i-vectors could classify these qualities as if they represent different speakers and 2) such a system would outperform one based on traditional voice signal processing algorithms. Training recordings were provided by thirteen amateur actors, each producing 5 perceptually different voice qualities in connected speech: normal, breathy, fry, twang, and hyponasal. As hypothesized, the i-vector system outperformed the acoustic measure system in classification accuracy (i.e. 97.5% compared to 77.2%, respectively). Findings are expected because the i-vector system maps features to an integrated space which better represents each voice quality than the 22-feature space of the baseline system. Therefore, an i-vector based system has potential for clinical application in voice therapy and voice training.
Recent works have shown that Deep Recurrent Neural Networks using the LSTM architecture can achieve strong single-channel speech enhancement by estimating time-frequency masks. However, these models do not naturally generalize to multi-channel inputs from varying microphone configurations. In contrast, spatial clustering techniques can achieve such generalization but lack a strong signal model. Our work proposes a combination of the two approaches. By using LSTMs to enhance spatial clustering based time-frequency masks, we achieve both the signal modeling performance of multiple single-channel LSTM-DNN speech enhancers and the signal separation performance and generality of multi-channel spatial clustering. We compare our proposed system to several baselines on the CHiME-3 dataset. We evaluate the quality of the audio from each system using SDR from the BSS_eval toolkit and PESQ. We evaluate the intelligibility of the output of each system using word error rate from a Kaldi automatic speech recognizer.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا