Do you want to publish a course? Click here

I-vector Based Within Speaker Voice Quality Identification on connected speech

110   0   0.0 ( 0 )
 Added by Chuyao Feng
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Voice disorders affect a large portion of the population, especially heavy voice users such as teachers or call-center workers. Most voice disorders can be treated effectively with behavioral voice therapy, which teaches patients to replace problematic, habituated voice production mechanics with optimal voice production technique(s), yielding improved voice quality. However, treatment often fails because patients have difficulty differentiating their habitual voice from the target technique independently, when clinician feedback is unavailable between therapy sessions. Therefore, with the long term aim to extend clinician feedback to extra-clinical settings, we built two systems that automatically differentiate various voice qualities produced by the same individual. We hypothesized that 1) a system based on i-vectors could classify these qualities as if they represent different speakers and 2) such a system would outperform one based on traditional voice signal processing algorithms. Training recordings were provided by thirteen amateur actors, each producing 5 perceptually different voice qualities in connected speech: normal, breathy, fry, twang, and hyponasal. As hypothesized, the i-vector system outperformed the acoustic measure system in classification accuracy (i.e. 97.5% compared to 77.2%, respectively). Findings are expected because the i-vector system maps features to an integrated space which better represents each voice quality than the 22-feature space of the baseline system. Therefore, an i-vector based system has potential for clinical application in voice therapy and voice training.



rate research

Read More

Recent state-of-the-art neural text-to-speech (TTS) synthesis models have dramatically improved intelligibility and naturalness of generated speech from text. However, building a good bilingual or code-switched TTS for a particular voice is still a challenge. The main reason is that it is not easy to obtain a bilingual corpus from a speaker who achieves native-level fluency in both languages. In this paper, we explore the use of Mandarin speech recordings from a Mandarin speaker, and English speech recordings from another English speaker to build high-quality bilingual and code-switched TTS for both speakers. A Tacotron2-based cross-lingual voice conversion system is employed to generate the Mandarin speakers English speech and the English speakers Mandarin speech, which show good naturalness and speaker similarity. The obtained bilingual data are then augmented with code-switched utterances synthesized using a Transformer model. With these data, three neural TTS models -- Tacotron2, Transformer and FastSpeech are applied for building bilingual and code-switched TTS. Subjective evaluation results show that all the three systems can produce (near-)native-level speech in both languages for each of the speaker.
We present a novel source separation model to decompose asingle-channel speech signal into two speech segments belonging to two different speakers. The proposed model is a neural network based on residual blocks, and uses learnt speaker embeddings created from additional clean context recordings of the two speakers as input to assist in attributing the different time-frequency bins to the two speakers. In experiments, we show that the proposed model yields good performance in the source separation task, and outperforms the state-of-the-art baselines. Specifically, separating speech from the challenging VoxCeleb dataset, the proposed model yields 4.79dB signal-to-distortion ratio, 8.44dB signal-to-artifacts ratio and 7.11dB signal-to-interference ratio.
Utilizing a human-perception-related objective function to train a speech enhancement model has become a popular topic recently. The main reason is that the conventional mean squared error (MSE) loss cannot represent auditory perception well. One of the typical hu-man-perception-related metrics, which is the perceptual evaluation of speech quality (PESQ), has been proven to provide a high correlation to the quality scores rated by humans. Owing to its complex and non-differentiable properties, however, the PESQ function may not be used to optimize speech enhancement models directly. In this study, we propose optimizing the enhancement model with an approximated PESQ function, which is differentiable and learned from the training data. The experimental results show that the learned surrogate function can guide the enhancement model to further boost the PESQ score (in-crease of 0.18 points compared to the results trained with MSE loss) and maintain the speech intelligibility.
Deep speaker embedding represents the state-of-the-art technique for speaker recognition. A key problem with this approach is that the resulting deep speaker vectors tend to be irregularly distributed. In previous research, we proposed a deep normalization approach based on a new discriminative normalization flow (DNF) model, by which the distributions of individual speakers are arguably transformed to homogeneous Gaussians. This normalization was demonstrated to be effective, but despite this remarkable success, we empirically found that the latent codes produced by the DNF model are generally neither homogeneous nor Gaussian, although the model has assumed so. In this paper, we argue that this problem is largely attributed to the maximum-likelihood (ML) training criterion of the DNF model, which aims to maximize the likelihood of the observations but not necessarily improve the Gaussianality of the latent codes. We therefore propose a new Maximum Gaussianality (MG) training approach that directly maximizes the Gaussianality of the latent codes. Our experiments on two data sets, SITW and CNCeleb, demonstrate that our new MG training approach can deliver much better performance than the previous ML training, and exhibits improved domain generalizability, particularly with regard to cosine scoring.
Nowadays, most of the objective speech quality assessment tools (e.g., perceptual evaluation of speech quality (PESQ)) are based on the comparison of the degraded/processed speech with its clean counterpart. The need of a golden reference considerably restricts the practicality of such assessment tools in real-world scenarios since the clean reference usually cannot be accessed. On the other hand, human beings can readily evaluate the speech quality without any reference (e.g., mean opinion score (MOS) tests), implying the existence of an objective and non-intrusive (no clean reference needed) quality assessment mechanism. In this study, we propose a novel end-to-end, non-intrusive speech quality evaluation model, termed Quality-Net, based on bidirectional long short-term memory. The evaluation of utterance-level quality in Quality-Net is based on the frame-level assessment. Frame constraints and sensible initializations of forget gate biases are applied to learn meaningful frame-level quality assessment from the utterance-level quality label. Experimental results show that Quality-Net can yield high correlation to PESQ (0.9 for the noisy speech and 0.84 for the speech processed by speech enhancement). We believe that Quality-Net has potential to be used in a wide variety of applications of speech signal processing.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا