Do you want to publish a course? Click here

Joint Echo Cancellation and Noise Suppression based on Cascaded Magnitude and Complex Mask Estimation

305   0   0.0 ( 0 )
 Added by Haohe Liu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Acoustic echo and background noise can seriously degrade the intelligibility of speech. In practice, echo and noise suppression are usually treated as two separated tasks and can be removed with various digital signal processing (DSP) and deep learning techniques. In this paper, we propose a new cascaded model, magnitude and complex temporal convolutional neural network (MC-TCN), to jointly perform acoustic echo cancellation and noise suppression with the help of adaptive filters. The MC-TCN cascades two separation cores, which are used to extract robust magnitude spectra feature and to enhance magnitude and phase simultaneously. Experimental results reveal that the proposed method can achieve superior performance by removing both echo and noise in real-time. In terms of DECMOS, the subjective test shows our method achieves a mean score of 4.41 and outperforms the INTERSPEECH2021 AEC-Challenge baseline by 0.54.



rate research

Read More

With the increasing demand for audio communication and online conference, ensuring the robustness of Acoustic Echo Cancellation (AEC) under the complicated acoustic scenario including noise, reverberation and nonlinear distortion has become a top issue. Although there have been some traditional methods that consider nonlinear distortion, they are still inefficient for echo suppression and the performance will be attenuated when noise is present. In this paper, we present a real-time AEC approach using complex neural network to better modeling the important phase information and frequency-time-LSTMs (F-T-LSTM), which scan both frequency and time axis, for better temporal modeling. Moreover, we utilize modified SI-SNR as cost function to make the model to have better echo cancellation and noise suppression (NS) performance. With only 1.4M parameters, the proposed approach outperforms the AEC-challenge baseline by 0.27 in terms of Mean Opinion Score (MOS).
It remains a tough challenge to recover the speech signals contaminated by various noises under real acoustic environments. To this end, we propose a novel system for denoising in the complicated applications, which is mainly comprised of two pipelines, namely a two-stage network and a post-processing module. The first pipeline is proposed to decouple the optimization problem w:r:t: magnitude and phase, i.e., only the magnitude is estimated in the first stage and both of them are further refined in the second stage. The second pipeline aims to further suppress the remaining unnatural distorted noise, which is demonstrated to sufficiently improve the subjective quality. In the ICASSP 2021 Deep Noise Suppression (DNS) Challenge, our submitted system ranked top-1 for the real-time track 1 in terms of Mean Opinion Score (MOS) with ITU-T P.808 framework.
90 - Lu Ma , Song Yang , Yaguang Gong 2021
Acoustic Echo Cancellation (AEC) plays a key role in speech interaction by suppressing the echo received at microphone introduced by acoustic reverberations from loudspeakers. Since the performance of linear adaptive filter (AF) would degrade severely due to nonlinear distortions, background noises, and microphone clipping in real scenarios, deep learning has been employed for AEC for its good nonlinear modelling ability. In this paper, we constructed an end-to-end multi-scale attention neural network for AEC. Temporal convolution is first used to transform waveform into spectrogram. The spectrograms of the far-end reference and the near-end mixture are concatenated, and fed to a temporal convolution network (TCN) with stacked dilated convolution layers. Attention mechanism is performed among these representations from different layers to adaptively extract relevant features by referring to the previous hidden state in the encoder long short-term memory (LSTM) unit. The representations are weighted averaged and fed to the encoder LSTM for the near-end speech estimation. Experiments show the superiority of our method in terms of the echo return loss enhancement (ERLE) for single-talk periods and the perceptual evaluation of speech quality (PESQ) score for double-talk periods in background noise and nonlinear distortion scenarios.
77 - Lu Ma , Song Yang , Yaguang Gong 2021
Acoustic Echo Cancellation (AEC) whose aim is to suppress the echo originated from acoustic coupling between loudspeakers and microphones, plays a key role in voice interaction. Linear adaptive filter (AF) is always used for handling this problem. However, since there would be some severe effects in real scenarios, such nonlinear distortions, background noises, and microphone clipping, it would lead to considerable residual echo, giving poor performance in practice. In this paper, we propose an end-to-end network structure for echo cancellation, which is directly done on time-domain audio waveform. It is transformed to deep representation by temporal convolution, and modelled by Long Short-Term Memory (LSTM) for considering temporal property. Since time delay and severe reverberation may exist at the near-end with respect to the far-end, a local attention is employed for alignment. The network is trained using multitask learning by employing an auxiliary classification network for double-talk detection. Experiments show the superiority of our proposed method in terms of the echo return loss enhancement (ERLE) for single-talk periods and the perceptual evaluation of speech quality (PESQ) score for double-talk periods in background noise and nonlinear distortion scenarios.
Deep neural network based methods have been successfully applied to music source separation. They typically learn a mapping from a mixture spectrogram to a set of source spectrograms, all with magnitudes only. This approach has several limitations: 1) its incorrect phase reconstruction degrades the performance, 2) it limits the magnitude of masks between 0 and 1 while we observe that 22% of time-frequency bins have ideal ratio mask values of over~1 in a popular dataset, MUSDB18, 3) its potential on very deep architectures is under-explored. Our proposed system is designed to overcome these. First, we propose to estimate phases by estimating complex ideal ratio masks (cIRMs) where we decouple the estimation of cIRMs into magnitude and phase estimations. Second, we extend the separation method to effectively allow the magnitude of the mask to be larger than 1. Finally, we propose a residual UNet architecture with up to 143 layers. Our proposed system achieves a state-of-the-art MSS result on the MUSDB18 dataset, especially, a SDR of 8.98~dB on vocals, outperforming the previous best performance of 7.24~dB. The source code is available at: https://github.com/bytedance/music_source_separation
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا