Do you want to publish a course? Click here

Improvement in the performance of multilayer insulation technique and impact in the rare physics search experiments

47   0   0.0 ( 0 )
 Added by Venktesh Singh Dr
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Providing thermal insulation to systems at very low temperature from surroundings, involves blocking the transport of thermal energy regular or enhanced, taking place through radiative, conductive and convective processes. For instance, the enhancement of radiative heat transport that takes place by infra red or far infra red light at low temperature is due to diffractive propagation. The wavelength of light in this part of the spectrum usually lie in the range of mm to cms. Hence it can get bent across an obstacle while propagating forward. Apart from radiative, the convective and conductive processes also get affected due to appearance of non linearities in the modes of lattice vibrations and anomalies in material transport due to the appearance of vorticity and turbulence in the intervening media. The Multilayer insulation technique has offered a robust thermal protective mechanism to provide proper insulation to the cold walls of the cryostats from the heat of the surroundings. This work is focused on the estimation of performance and efficiency of the MLI technique as well as exploration of its versatile applicability. Three different spacer materials such as Dacron, Glass tissue, and Silk net with radiation shields are selected for the intervening medium in the present study. This article explores the thermal performance of MLI system by changing the physical parameters, varying the geometry of the radiation shields perforation styles of radiation shields and by analyzing the effect of arrangement of radiation shields on the conduction heat load. This analysis is concluded by studying the possibility of using MLI technique in the health sector by reducing the evaporation rate of liquid Oxygen during pandemic situations e.g. in COVID19.



rate research

Read More

Multilayer insulation (MLI) is an important technique for the reduction of radiation heat load in cryostats. The present work is focused on investigation for the selection of suitable reflective layer and spacer material in MLI systems. In our analysis, we have selected perforated double-Aluminized Mylar (DAM) with Dacron, unperforated DAM with Silk-net and perforated DAM with Glass-tissue for their evaluation as the reflective layer as well as spacer materials in MLI technique. Current work would discuss the calculation of the effect of layer density and the number of layers on the heat load. Knowing the key parameters of MLI, we have compared the heat load generation in spherical as well as cylindrical cryostats and the effect of layering near and outer surface on the heat load.
The noble elements, argon and xenon, are frequently employed as the target and event detector for weakly interacting particles such as neutrinos and Dark Matter. For such rare processes, background radiation must be carefully minimized. Radon provides one of the most significant contaminants since it is an inevitable product of trace amounts of natural uranium. To design a purification system for reducing such contamination, the adsorption characteristics of radon in nitrogen, argon, and xenon carrier gases on various types of charcoals with different adsorbing properties and intrinsic radioactive purities have been studied in the temperature range of 190-295 K at flow rates of 0.5 and 2 standard liters per minute. Essential performance parameters for the various charcoals include the average breakthrough times ($tau$), dynamic adsorption coefficients (k$_a$) and the number of theoretical stages (n). It is shown that the k$_a$-values for radon in nitrogen, argon, and xenon increase as the temperature of the charcoal traps decreases, and that they are significantly larger in nitrogen and argon than in xenon gas due to adsorption saturation effects. It is found that, unlike in xenon, the dynamic adsorption coefficients for radon in nitrogen and argon strictly obey the Arrhenius law. The experimental results strongly indicate that nitric acid etched Saratech is the best candidate among all used charcoal brands. It allows reducing total radon concentration in the LZ liquid Xe detector to meet the ultimate goal in the search for Dark Matter.
124 - Ze She , Zhi Zeng , Hao Ma 2021
The rare event search experiments using germanium detectors are performed in the underground laboratories to prevent cosmic rays. However, the cosmogenic activation of the cupreous detector components on the ground will generate long half-life radioisotopes and contribute continually to the expected background level. We present a study on the cosmogenic activation of copper after 504 days of exposure at an altitude of 2469.4 m outside the China Jinping Underground Laboratory (CJPL). The specific activities of the cosmogenic nuclides produced in the copper bricks were measured using a low background germanium gamma-ray spectrometer at CJPL. The production rates at sea level, in units of nuclei/kg/day, are 18.6 pm 2.0 for Mn-54, 9.9 pm 1.3 for Co-56, 48.3 pm 5.5 for Co-57, 51.8 pm 2.5 for Co-58 and 39.7 pm 5.7 for Co-60, respectively. Given the expected exposure history of the germanium detectors, a Monte Carlo simulation is conducted to assess the cosmogenic background contributions of the detectors cupreous components.
Machine Learning (ML) algorithms have been demonstrated to be capable of predicting impact parameter in heavy-ion collisions from transport model simulation events with perfect detector response. We extend the scope of ML application to experimental data by incorporating realistic detector response of the S$pi$RIT Time Projection Chamber into the heavy-ion simulation events generated from the UrQMD model to resemble experimental data. At 3 fm, the predicted impact parameter is 2.8 fm if simulation events with perfect detector is used for training and testing; 2.4 fm if detector response is included in the training and testing, and 5.8 fm if ML algorithms trained with perfect detector is applied to testing data that has included detector response. The last result is not acceptable illustrating the importance of including the detector response in developing the ML training algorithm. We also test the model dependence by applying the algorithms trained on UrQMD model to simulated events from four different transport models as well as using different input parameters on UrQMD model. Using data from Sn+Sn collisions at E/A=270 MeV, the ML determined impact parameters agree well with the experimentally determined impact parameter using multiplicities, except in the very central and very peripheral regions. ML selects central collision events better and allows impact parameters determination beyond the sharp cutoff limit imposed by experimental methods.
In this work we address the advantages, limitations, and technical subtleties of employing FPGA-based digital servos for high-bandwidth feedback control of lasers in atomic, molecular, and optical (AMO) physics experiments. Specifically, we provide the results of benchmark performance tests in experimental setups including noise, bandwidth, and dynamic range for two digital servos built with low and mid-range priced FPGA development platforms. The digital servo results are compared to results obtained from a commercially available state-of-the-art analog servo using the same plant for control (intensity stabilization). The digital servos have feedback bandwidths of 2.5 MHz, limited by the total signal latency, and we demonstrate improvements beyond the transfer function offered by the analog servo including a three pole filter and a two pole filter with phase compensation to suppress resonances. We also discuss limitations of our FPGA-servo implementation and general considerations when designing and using digital servos.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا