Do you want to publish a course? Click here

Damped Dirac magnon in a metallic kagome antiferromagnet FeSn

396   0   0.0 ( 0 )
 Added by Seung-Hwan Do
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The kagome lattice is a fertile platform to explore topological excitations with both Fermi-Dirac and Bose-Einstein statistics. While relativistic Dirac Fermions and flat-bands have been discovered in the electronic structure of kagome metals, the spin excitations have received less attention. Here we report inelastic neutron scattering studies of the prototypical kagome magnetic metal FeSn. The spectra display well-defined spin waves extending up to 120 meV. Above this energy, the spin waves become progressively broadened, reflecting interactions with the Stoner continuum. Using linear spin wave theory, we determine an effective spin Hamiltonian that reproduces the measured dispersion. This analysis indicates that the Dirac magnon at the K-point remarkably occurs on the brink of a region where well-defined spin waves become unobservable. Our results emphasize the influential role of itinerant carriers on the topological spin excitations of metallic kagome magnets.



rate research

Read More

In two-dimensional (2D) metallic kagome lattice materials, destructive interference of electronic hopping pathways around the kagome bracket can produce nearly localized electrons, and thus electronic bands that are flat in momentum space. When ferromagnetic order breaks the degeneracy of the electronic bands and splits them into the spin-up majority and spin-down minority electronic bands, quasiparticle excitations between the spin-up and spin-down flat bands should form a narrow localized spin-excitation Stoner continuum coexisting with well-defined spin waves in the long wavelengths. Here we report inelastic neutron scattering studies of spin excitations in 2D metallic Kagome lattice antiferromagnetic FeSn and paramagnetic CoSn, where angle resolved photoemission spectroscopy experiments found spin-polarized and nonpolarized flat bands, respectively, below the Fermi level. Although our initial measurements on FeSn indeed reveal well-defined spin waves extending well above 140 meV coexisting with a flat excitation at 170 meV, subsequent experiments on CoSn indicate that the flat mode actually arises mostly from hydrocarbon scattering of the CYTOP-M commonly used to glue the samples to aluminum holder. Therefore, our results established the evolution of spin excitations in FeSn and CoSn, and identified an anomalous flat mode that has been overlooked by the neutron scattering community for the past 20 years.
121 - J. Schnack 2019
We present numerical evidence for the crystallization of magnons below the saturation field at non-zero temperatures for the highly frustrated spin-half kagome Heisenberg antiferromagnet. This phenomenon can be traced back to the existence of independent localized magnons or equivalently flat-band multi-magnon states. We present a loop-gas description of these localized magnons and a phase diagram of this transition, thus providing information for which magnetic fields and temperatures magnon crystallization can be observed experimentally. The emergence of a finite-temperature continuous transition to a magnon-crystal is expected to be generic for spin models in dimension $D>1$ where flat-band multi-magnon ground states break translational symmetry.
The kagome lattice based on 3d transition metals is a versatile platform for novel topological phases hosting symmetry-protected electronic excitations and exotic magnetic ground states. However, the paradigmatic states of the idealized two-dimensional (2D) kagome lattice - Dirac fermions and topological flat bands - have not been simultaneously observed, partly owing to the complex stacking structure of the kagome compounds studied to date. Here, we take the approach of examining FeSn, an antiferromagnetic single-layer kagome metal with spatially-decoupled kagome planes. Using polarization- and termination-dependent angle-resolved photoemission spectroscopy (ARPES), we detect the momentum-space signatures of coexisting flat bands and Dirac fermions in the vicinity of the Fermi energy. Intriguingly, when complemented with bulk-sensitive de Haas-van Alphen (dHvA) measurements, our data reveal an even richer electronic structure that exhibits robust surface Dirac fermions on specific crystalline terminations. Through band structure calculations and matrix element simulations, we demonstrate that the bulk Dirac bands arise from in-plane localized Fe-3d orbitals under kagome symmetry, while the surface state realizes a rare example of fully spin-polarized 2D Dirac fermions when combined with spin-layer locking in FeSn. These results highlight FeSn as a prototypical host for the emergent excitations of the kagome lattice. The prospect to harness these excitations for novel topological phases and spintronic devices is a frontier of great promise at the confluence of topology, magnetism, and strongly-correlated electron physics.
64 - R. Okuma , D. Nakamura , T. Okubo 2019
Search for a new quantum state of matter emerging in a crystal is one of recent trends in condensed matter physics. For magnetic materials, geometrical frustration and high magnetic field are two key ingredients to realize it: a conventional magnetic order is possibly destroyed by competing interactions (frustration) and is replaced by an exotic state that is characterized in terms of quasiparticles, that are magnons, and the magnetic field can control the density and chemical potential of the magnons. Here we show that a synthetic copper mineral, Cd-kapellasite, comprising a kagome lattice made of corner-sharing triangles of Cu2+ ions carrying spin-1/2 exhibits an unprecedented series of fractional magnetization plateaux in ultrahigh magnetic fields up to 160 T, which may be interpreted as crystallizations of emergent magnons localized on the hexagon of the kagome lattice. Our observation reveals a novel type of particle physics realized in a highly frustrated magnet.
Non-collinear magnetic order arises for various reasons in several magnetic systems and exhibits interesting spin dynamics. Despite its ubiquitous presence, little is known of how magnons, otherwise stable quasiparticles, decay in these systems, particularly in metallic magnets. Using inelastic neutron scattering, we examine the magnetic excitation spectra in a metallic non-collinear antiferromagnet CrB$_{2}$, in which Cr atoms form a triangular lattice and display incommensurate magnetic order. Our data show intrinsic magnon damping and continuum-like excitations that cannot be explained by linear spin wave theory. The intrinsic magnon linewidth $Gamma(q,E_{q})$ shows very unusual momentum dependence, which our analysis shows to originate from the combination of two-magnon decay and the Stoner continuum. By comparing the theoretical predictions with the experiments, we identify where in the momentum and energy space one of the two factors becomes more dominant. Our work constitutes a rare comprehensive study of the spin dynamics in metallic non-collinear antiferromagnets. It reveals, for the first time, definite experimental evidence of the higher-order effects in metallic antiferromagnets.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا