Do you want to publish a course? Click here

A series of magnon crystals appearing under ultrahigh magnetic fields in a kagome antiferromagnet

65   0   0.0 ( 0 )
 Added by Ryutaro Okuma
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Search for a new quantum state of matter emerging in a crystal is one of recent trends in condensed matter physics. For magnetic materials, geometrical frustration and high magnetic field are two key ingredients to realize it: a conventional magnetic order is possibly destroyed by competing interactions (frustration) and is replaced by an exotic state that is characterized in terms of quasiparticles, that are magnons, and the magnetic field can control the density and chemical potential of the magnons. Here we show that a synthetic copper mineral, Cd-kapellasite, comprising a kagome lattice made of corner-sharing triangles of Cu2+ ions carrying spin-1/2 exhibits an unprecedented series of fractional magnetization plateaux in ultrahigh magnetic fields up to 160 T, which may be interpreted as crystallizations of emergent magnons localized on the hexagon of the kagome lattice. Our observation reveals a novel type of particle physics realized in a highly frustrated magnet.



rate research

Read More

The kagome lattice is a fertile platform to explore topological excitations with both Fermi-Dirac and Bose-Einstein statistics. While relativistic Dirac Fermions and flat-bands have been discovered in the electronic structure of kagome metals, the spin excitations have received less attention. Here we report inelastic neutron scattering studies of the prototypical kagome magnetic metal FeSn. The spectra display well-defined spin waves extending up to 120 meV. Above this energy, the spin waves become progressively broadened, reflecting interactions with the Stoner continuum. Using linear spin wave theory, we determine an effective spin Hamiltonian that reproduces the measured dispersion. This analysis indicates that the Dirac magnon at the K-point remarkably occurs on the brink of a region where well-defined spin waves become unobservable. Our results emphasize the influential role of itinerant carriers on the topological spin excitations of metallic kagome magnets.
The magnetization processes of the spin-3/2 antiferromagnet LiInCr4O8 comprising a breathing pyrochlore lattice, which is an alternating array of small and large tetrahedra, are studied under ultrahigh magnetic fields of up to 130 T using state-of-the-art pulsed magnets. A half magnetization plateau is observed above 90 T to 130 T, suggesting that LiInCr4O8 has a strong spin-lattice coupling, similar to conventional chromium spinel oxides. The magnetization of LiGa0.125In0.875Cr4O8, in which the structural and magnetic transitions at low temperatures have been completely suppressed, shows a sudden increase above 13 T, indicating that a spin gap of 2.2 meV exists between a tetramer singlet ground state and an excited state with total spin 1, with the latter being stabilized by the application of a magnetic field. The breathing pyrochlore antiferromagnet is found to be a unique frustrated system with strong spin-lattice coupling and bond alternation.
121 - J. Schnack 2019
We present numerical evidence for the crystallization of magnons below the saturation field at non-zero temperatures for the highly frustrated spin-half kagome Heisenberg antiferromagnet. This phenomenon can be traced back to the existence of independent localized magnons or equivalently flat-band multi-magnon states. We present a loop-gas description of these localized magnons and a phase diagram of this transition, thus providing information for which magnetic fields and temperatures magnon crystallization can be observed experimentally. The emergence of a finite-temperature continuous transition to a magnon-crystal is expected to be generic for spin models in dimension $D>1$ where flat-band multi-magnon ground states break translational symmetry.
Measuring the specific heat of herbertsmithite single crystals in high magnetic fields (up to $34$ T) allows us to isolate the low-temperature kagome contribution while shifting away extrinsic Schottky-like contributions. The kagome contribution follows an original power law $C_{p}(Trightarrow0)propto T^{alpha}$ with $alphasim1.5$ and is found field-independent between $28$ and $34$ T for temperatures $1leq Tleq4$ K. These are serious constrains when it comes to replication using low-temperature extrapolations of high-temperature series expansions. We manage to reproduce the experimental observations if about $10$ % of the kagome sites do not contribute. Between $0$ and $34$ T, the computed specific heat has a minute field dependence then supporting an algebraic temperature dependence in zero field, typical of a critical spin liquid ground state. The need for an effective dilution of the kagome planes is discussed and is likely linked to the presence of copper ions on the interplane zinc sites. At very low temperatures and moderate fields, we also report some small field-induced anomalies in the total specific heat and start to elaborate a phase diagram.
459 - T. Ono , K. Morita , M. Yano 2009
Hexagonal antiferromagnets Cs$_2$Cu$_3$MF$_{12}$ (M = Zr, Hf and Sn) have uniform Kagome lattices of Cu$^{2+}$ with S = 1/2, whereas Rb$_2$Cu$_3$SnF$_{12}$ has a 2a by 2a enlarged cell as compared with the uniform Kagome lattice. The crystal data of Cs$_2$Cu$_3$SnF$_{12}$ synthesized first in the present work are reported. We performed magnetic susceptibility measurements on this family of Kagome antiferromagnet using single crystals. In the Cs$_2$Cu$_3$MF$_{12}$ systems, structural phase transitions were observed at $T_t = 225$ K, 172 K and 185 K for M = Zr, Hf and Sn, respectively. The magnetic susceptibilities observed for $T > T_t$ are almost perfectly described using theoretical results obtained by exact diagonalization for the 24-site Kagome cluster with $J/k_B = 244$ K, 266 K and 240 K, respectively. Magnetic ordering accompanied by the weak ferromagnetic moment occurs at $T_N = 23.5$ K, 24.5 K and 20.0 K, respectively. The origins of the weak ferromagnetic moment should be ascribed to the lattice distortion that breaks the hexagonal symmetry of the exchange network for $T < T_t$ and the Dzyaloshinsky-Moriya interaction. Rb$_2$Cu$_3$SnF$_{12}$ is magnetically described as a modified Kagome antiferromagnet with four types of neighboring exchange interaction. Neither structural nor magnetic phase transition was observed in Rb$_2$Cu$_3$SnF$_{12}$. Its magnetic ground state was found to be a spin singlet with a triplet gap. Using exact diagonalization for a 12-site Kagome cluster, we analyzed the magnetic susceptibility and evaluated individual exchange interactions. The causes leading to the different ground states in Cs$_2$Cu$_3$SnF$_{12}$ and Rb$_2$Cu$_3$SnF$_{12}$ are discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا